Background & Objective: In Triple-Negative Breast Cancers (TNBCs), estrogen receptor (ER), progesterone receptor (PR) and HER2/neu genes are not expressed. Fibroblastic Growth Factor Receptor-1 (FGFR1) gene product is a protein that acts as a receptor of thyrosin kinase. It plays a role in the proliferation, differentiation, and migration of malignant cells. The objective was to evaluate the possible relation between FGFR1 over-expression and amplification in TNBCs and other clinicopathological variables.
Methods: In this cross sectional study, purposive sampling was used to collect eighty-four TNBC specimens from mastectomy specimens collected between 2013 and 2017. Tissue microarrays were evaluated for FGFR1 over-expression and amplification respectively by immunohistochemistry (IHC) staining and real time Polymerase Chain Reaction (PCR). The needed clinical and paraclinical information were obtained from patients’ files. To analyze the correlation among prognostic factors, we used a wide range of different statistic methods, namely Chi-square test, independent t-test, Fisher's exact test, and ANOVA.
Results: FGFR1 over-expression was found in 15 of the 84 samples (17.9%). FGFR1 gene amplification was observed in 33.3% (28 of 84) of the samples. We found no association between FGFR1 and clinicopathological parameters, including tumor grade, stage, and patient survival (P>0.005).
Conclusion: FGFR1 over-expression and amplification may not be related to clinicopathological parameters, namely age, stage, and grade of the cancer not to mention TNBC survival. Using FGFR1 as a prognostic factor in TNBCs requires further study.
Background & Objective:In vascular (vasculogenic) mimicry (VM), tumoral cells mimic the endothelial cells and form the extracellular matrix-rich tubular networks. It has been proposed that VM is more extensive in aggressive tumors. This study was designed to investigate the rate of VM expression in the stromal cells of invasive ductal carcinoma (IDC) and to find its relationship with other clinicopathological factors.Methods:In this cross-sectional study, 120 patients with histopathologic diagnosis of IDC who received mastectomy were included. The VM expression was determined by immunohistochemistry (IHC). The clinicopathologic data including age, tumor size, histological grade, clinical stage, axillary lymph node metastasis, hormonal receptors, and survival were documented.Results:The mean (±SD) age of the patients was 51 (±13.83) years old. The stromal VM expression was detected in 16 of 120 patients (13.3%). Twelve specimens (75%) of positive VM expression group had grade 3 which was higher than negative VM expression group (9 cases, 8.65%; P<0.001). The VM expression showed statistically significant relationship with higher histologic grade higher clinical stage (stage 3) of the tumor (62.5% vs. 87%; P=0.003), the presence of axillary lymph node metastasis (95.6% vs. 55.8%; P<0.001), and positive HER-2 (100% vs. 31.1%; P<0.001); but not estrogen receptor (ER) or progesterone receptor (PR). However, age, tumor size and mortality rate were not significantly different among the patients with and without VM expression.Conclusion:The stromal VM expression showed significant relationship with higher stage and grade of the tumor and the presence of nodal metastasis. The VM expression in IDC can be used as a marker for tumor aggressiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.