Covid-19 pandemisi nedeniyle milyonlarca insan hayatını kaybetmiş ve birçok ülkede yetersiz sağlık sistemleri hizmet veremez hale gelmiştir. Covid-19 hastalarının yoğun bakım ve ventilasyon ihtiyaçlarının belirlenerek hastalığın prognozu hakkında tahminlerde bulunulması, hastanın sağlık durumu ve sağlık sistemlerinin etkin kullanımı açısından önemlidir. Bu amaçla oluşturulan Covid-19 akciğer bilgisayarlı tomografi (BT) bulguları veri seti buzlu cam opasitesi, konsolidasyon, kaldırım taşı paterni, konsodilasyon ve buzlu cam, nodül ve buzlu cam sınıflarını içermektedir. Bu çalışmada önerilen yaklaşım dört adımdan oluşmaktadır. Birinci adımda VGG-16 modeli akciğer BT bulguları veri seti ile eğitilmiştir. İkinci adımda elde edilen en ayırt edici öznitelikler BORUTA algoritması kullanılarak seçilmiştir. Üçüncü adımda sıralama yöntemiyle her görüntü için en değerli ilk 200, 300 ve 400 öznitelikler elde edilmiştir. Son adımda ise Destek Vektör Makineleri ve Lineer Diskriminant Analizi ile bu özellikler sınıflandırılmıştır. Akciğer BT bulguları veri seti için elde edilen genel doğruluk %97,02'dir. Derin Öğrenme yöntemleri ile Covid-19 hastalık prognozunu tahmin etmek için oluşturulan veri seti kullanılarak elde edilen bu başarılı sonuç, viral pnömoni türlerinin akciğer BT bulgularının sınıflandırılmasında çok önemli bir yeniliktir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.