Seed germination and seedling formation are the most important stages in the plant growth cycle, and they play a significant role in determining plant density. The main issues in drought-prone areas are poor seed germination and seedling emergence. Priming is known to improve germination and seedling formation under a variety of environmental stresses. Salicylic acid (SA) regulates many physiological processes in plants, including growth, development, ion absorption, and germination. The current study was conducted to determine the responses of two bread wheat genotypes (DZ17-1 and Empire Plus) to drought stress during germination and early development periods. A randomized plots factorial design with four replications was used in the laboratory of the Department of Field Crops, Faculty of Agriculture, Şırnak University. The seeds of bread wheat genotypes were treated with 0, 0.5, and 1 mM SA in the study. Seeds germinated in five different drought stress environments (0, -0.25, -0.50, -0.75, -1 MPa PEG 6000 solution). Coleoptile length, root length, seedling length, germination rate, and germination vigor were all measured. According to the findings, increased drought stress had a negative effect on all of the traits studied. In drought conditions, only 0.5 mM SA application had an increasing effect on germination rate and germination vigor properties. It was found that the Empire Plus cultivar was more drought tolerant.
Under changing climate, abiotic stresses especially salinity have posed serious threats to modern crop production systems of staple crops and chemo-priming with salicylic acid offers a promising remedy. The present study aimed at ameliorating the adverse effects of salt stress through optimization of salicylic acid (SA) for two bread wheat genotypes (DZ17-1 and Empire Plus). The trial was comprised of chemo-priming with different SA levels including 0, 0.5, and 1 mM applied to the seeds of bread wheat genotypes exposed to different salinity levels (0, 50, 100, 150, 200 mM NaCl). The response variables included germination indices, roots length, and weight along with seedling traits. The results revealed that increasing the level of salinity had a negative effect on both genotypes of wheat and all traits studied. The DZ17-7 genotype was found to be more tolerant to salt stress. Among SA concentrations, 1 mM imparted a significant influence on germination, root traits, and seedling parameters. Although SA showed positive effects in salt stress conditions in the study, further studies are needed to clarify the role of SA in providing stress tolerance of plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.