Obesity and type 2 diabetes mellitus have reached an epidemic level, thus novel treatment concepts need to be identified. Myostatin, a myokine known for restraining skeletal muscle growth, has been associated with the development of insulin resistance and type 2 diabetes mellitus. Yet, little is known about the regulation of myostatin in human obesity and insulin resistance. We aimed to investigate the regulation of myostatin in obesity and uncover potential associations between myostatin, metabolic markers and insulin resistance/sensitivity indices. Circulating active myostatin concentration was measured in the serum of twenty-eight severely obese non-diabetic patients compared to a sex and age matched lean and overweight control group (n=22). Insulin resistance/sensitivity was assessed in the obese group. Skeletal muscle and adipose tissue specimens from the obese group were collected during elective bariatric surgery. Adipose tissue samples from lean and overweight subjects were collected during elective abdominal surgery. Myostatin concentration was increased in obese compared to lean individuals, while myostatin adipose tissue expression did not differ. Muscle myostatin gene expression strongly correlated with expression of metabolic genes such as ,, . Circulating myostatin concentration correlated positively with insulin resistance indices and negatively with insulin sensitivity indices. The best correlation was obtained for the oral glucose insulin sensitivity index. Our results point to an interesting correlation between myostatin and insulin resistance/sensitivity in humans, and emphasize its need for further evaluation as a pharmacological target in the prevention and treatment of obesity-associated metabolic complications.
BackgroundThe metabolic syndrome is becoming increasingly prevalent in the general population that is at simultaneous risk for both type 2 diabetes and cardiovascular disease. The critical pathogenic mechanisms underlying these diseases are obesity-driven insulin resistance and atherosclerosis, respectively. To obtain a better understanding of molecular mechanisms involved in pathogenesis of the metabolic syndrome as a basis for future treatment strategies, studies considering both inherent risks, namely metabolic and cardiovascular, are needed. Hence, the aim of this study was to identify pathways commonly dysregulated in obese adipose tissue and atherosclerotic plaques.MethodsWe carried out a gene set enrichment analysis utilizing data from two microarray experiments with obese white adipose tissue and atherosclerotic aortae as well as respective controls using a combined insulin resistance-atherosclerosis mouse model.ResultsWe identified 22 dysregulated pathways common to both tissues with p values below 0.05, and selected inflammatory response and oxidative phosphorylation pathways from the Hallmark gene set to conduct a deeper evaluation at the single gene level. This analysis provided evidence of a vast overlap in gene expression alterations in obese adipose tissue and atherosclerosis with Il7r, C3ar1, Tlr1, Rgs1 and Semad4d being the highest ranked genes for the inflammatory response pathway and Maob, Bckdha, Aldh6a1, Echs1 and Cox8a for the oxidative phosphorylation pathway.ConclusionsIn conclusion, this study provides extensive evidence for common pathogenic pathways underlying obesity-driven insulin resistance and atherogenesis which could provide a basis for the development of novel strategies to simultaneously prevent type 2 diabetes and cardiovascular disease in patients with metabolic syndrome.Electronic supplementary materialThe online version of this article (doi:10.1186/s12933-016-0441-2) contains supplementary material, which is available to authorized users.
Elevated circulating fatty acids (FAs) contribute to obesity-associated metabolic complications, but the mechanisms by which insulin suppresses lipolysis are poorly understood. We show that α/β-hydrolase domain-containing 15 (ABHD15) is required for the anti-lipolytic action of insulin in white adipose tissue (WAT). Neither insulin nor glucose treatments can suppress FA mobilization in global and conditional Abhd15-knockout (KO) mice. Accordingly, insulin signaling is impaired in Abhd15-KO adipocytes, as indicated by reduced AKT phosphorylation, glucose uptake, and de novo lipogenesis. In vitro data reveal that ABHD15 associates with and stabilizes phosphodiesterase 3B (PDE3B). Accordingly, PDE3B expression is decreased in the WAT of Abhd15-KO mice, mechanistically explaining increased protein kinase A (PKA) activity, hormone-sensitive lipase (HSL) phosphorylation, and undiminished FA release upon insulin signaling. Ultimately, Abhd15-KO mice develop insulin resistance. Notably, ABHD15 expression is decreased in humans with obesity and diabetes compared to humans with obesity and normal glucose tolerance, identifying ABHD15 as a potential therapeutic target to mitigate insulin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.