Reaction of trans-Ru(DMSO)4Cl2 with DMAP (DMAP = 4-dimethylaminopyridine) yields the yellow [Ru(DMAP)6](2+) cation in good yield. The crystal and molecular structure of [Ru(DMAP)6]Cl2.6CH3CH2OH was determined by X-ray diffraction methods. The complex crystallizes in the trigonal R3 space group with a = b = 16.373(1), c = 20.311(1) A, gamma = 120 degrees , and Z = 3 molecules per unit cell. The reaction of [Ru(DMAP)6](2+) in aerobic water gives the red [Ru(III)(DMAP)5(OH)](2+) cation. This complex shows a chemical behavior similar to [Ru(III)(NH3)5Cl](2+) and allows the preparation of a family of [Ru(DMAP)5L](n+) complexes. Their electronic properties indicate that the {Ru(II)(DMAP)5} fragment is a weaker pi-donor than {Ru(II)(NH 3)5}. Our density functional theory (DFT) calculations show that in {Ru(II)(DMAP)5} the DMAP ligands can compete for the pi electron density of the ruthenium making the fragment a weaker pi-donor.
The NIR donor-acceptor charge transfer (DACT) bands of the series of trinuclear complexes trans-[(NC)5Fe(II/III)(mu-CN)RuIIL4(mu-NC)FeIII(CN)5](5/4-) (L= pyridine, 4-tert-butylpyridine, and 4-methoxypyridine) are analyzed in terms of a simplified molecular orbital picture that reflects the interaction between the donor and acceptor fragments. The degree of electronic coupling between the fragments is estimated by a full fit of the DACT band profiles according to a three-state model inspired in the Mulliken-Hush formalism. The information is complemented with determinations performed on the asymmetric heterotrinuclear species trans-[(NC)5CoIII(mu-CN)RuII(py)4(mu-NC)FeIII(CN)5]4-, whose preparation is reported here for the first time. The analysis of the NIR spectra of the symmetric trans-[(NC)5FeIII(mu-CN)RuIIL4(mu-NC)FeIII(CN)5]4- species reveals a low degree of mixing between the terminal acceptor fragments and the bridging moiety containing RuII, with H12 values between 1.0 x 10(3) and 1.5 x 10(3) cm-1. The reorganization energy contributions seem to be the same for the three species, even when the spectra were recorded in different media. This observation also applies for the CoIII-substituted compound. The computed potential energy surfaces (PES) of the ground state for these complexes show only one stationary point, suggesting that the FeII-RuIII-FeIII (or FeII-RuIII-CoIII) electronic isomers are not thermally accessible. One-electron reduction leads to asymmetric trans-[(NC)5FeII(mu-CN)RuIIL4(mu-NC)FeIII(CN)5]5- compounds with potentially two DACT bands involving the RuII and the FeII donor fragments. These species reveal a similar degree of electronic mixing but the PES shows three minima. We explore the role of the bridging fragment in the long-range thermally induced electron transfer between the distant iron centers. The results suggest that superexchange and hopping might become competitive paths, depending on the substituents in the bridging fragment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.