Switzerland has one of the highest annual Legionnaires’ disease (LD) notification rates in Europe (7.8 cases/100,000 population in 2021). The main sources of infection and the cause for this high rate remain largely unknown. This hampers the implementation of targeted Legionella spp. control efforts. The SwissLEGIO national case–control and molecular source attribution study investigates risk factors and infection sources for community-acquired LD in Switzerland. Over the duration of one year, the study is recruiting 205 newly diagnosed LD patients through a network of 20 university and cantonal hospitals. Healthy controls matched for age, sex, and residence at district level are recruited from the general population. Risk factors for LD are assessed in questionnaire-based interviews. Clinical and environmental Legionella spp. isolates are compared using whole genome sequencing (WGS). Direct comparison of sero- and sequence types (ST), core genome multilocus sequencing types (cgMLST), and single nucleotide polymorphisms (SNPs) between clinical and environmental isolates are used to investigate the infection sources and the prevalence and virulence of different Legionella spp. strains detected across Switzerland. The SwissLEGIO study innovates in combining case–control and molecular typing approaches for source attribution on a national level outside an outbreak setting. The study provides a unique platform for national Legionellosis and Legionella research and is conducted in an inter- and transdisciplinary, co-production approach involving various national governmental and national research stakeholders.
Switzerland has one of the highest annual Legionnaires’ disease (LD) notification rates in Europe (7.8 cases/ 100,000 population in 2021). The main sources of infection and the cause for this high rate remain largely unknown. This hampers the implementation of targetedLegionellaspp. control efforts. TheSwissLEGIOnational case-control and molecular source attribution study investigates risk factors and infection sources for community-acquired LD in Switzerland. Over the duration of one year, the study is recruiting 205 newly diagnosed LD patients through a network of 20 university and cantonal hospitals. Healthy controls matched for age, sex, and residence at district level are recruited from the general population. Risk factors for LD are assessed in questionnaire-based interviews. Clinical and environmentalLegionellaspp. isolates are compared using whole genome sequencing (WGS). Direct comparison of sero- and sequence types (ST), core genome multilocus sequencing types (cgMLST), and single nucleotide polymorphisms (SNPs) between clinical and environmental isolates are used to investigate infection sources and the prevalence and virulence of differentLegionellaspp. strains detected across Switzerland. TheSwissLEGIOstudy innovates in combining case-control and molecular typing approaches for source attribution on a national level outside an outbreak setting. The study provides a unique platform for national Legionellosis andLegionellaresearch and is conducted in an inter- and transdisciplinary, co-production approach involving various national governmental and national research stakeholders.
Kidney calcification increases the risk of chronic kidney disease. However, to date, renal calcium phosphate crystallization, a main initiating and driving factor of kidney calcification, has not been explored as a drug target. Pre-clinical drug development is hampered by limited knowledge on the broad range of kidney calcification disorders, characterized by a multifactorial process of disease progression. In this work, we first established an in vitro calcification profiling platform to accelerate pre-clinical drug discovery. The image-based profiling assay allowed the rapid testing of several ionic stimuli and/or inhibitory molecules. We then leveraged a previously established library of inositol hexakisphosphate analogues to identify a renal calcium phosphate inhibitor. A lead compound showed in vitro and in vivo efficacy to prevent calcium phosphate-induced kidney damage. In conclusion, this work reports a renal calcium phosphate inhibitor that could efficiently reduce kidney damage and emphasizes the utility and translational value of the in vitro calcification platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.