We previously showed that human cardiomyocyte progenitor cells (hCMPCs) injected after myocardial infarction (MI) had differentiated into cardiomyocytes in vivo 3 months after MI. Here, we investigated the short-term (2 weeks) effects of hCMPCs on the infarcted mouse myocardium. MI was induced in immunocompromised (NOD/scid) mice, immediately followed by intramyocardial injection of hCMPCs labelled with enhanced green fluorescent protein (hCMPC group) or vehicle only (control group). Sham-operated mice served as reference. Cardiac performance was measured 2 and 14 days after MI by magnetic resonance imaging at 9.4 T. Left ventricular (LV) pressure–volume measurements were performed at day 15 followed by extensive immunohistological analysis. Animals injected with hCMPCs demonstrated a higher LV ejection fraction, lower LV end-systolic volume and smaller relaxation time constant than control animals 14 days after MI. hCMPCs engrafted in the infarcted myocardium, did not differentiate into cardiomyocytes, but increased vascular density and proliferation rate in the infarcted and border zone area of the hCMPC group. Injected hCMPCs engraft into murine infarcted myocardium where they improve LV systolic function and attenuate the ventricular remodelling process 2 weeks after MI. Since no cardiac differentiation of hCMPCs was evident after 2 weeks, the observed beneficial effects were most likely mediated by paracrine factors, targeting amongst others vascular homeostasis. These results demonstrate that hCMPCs can be applied to repair infarcted myocardium without the need to undergo differentiation into cardiomyocytes.
Myocardial infarction triggers reparative inflammatory processes programmed to repair damaged tissue. However, often additional injury to the myocardium occurs through the course of this inflammatory process, which ultimately can lead to heart failure. The potential beneficial effects of cell therapy in treating cardiac ischemic disease, the number one cause of death worldwide, are being studied extensively, both in clinical trials using adult stem cells as well as in fundamental research on cardiac stem cells and regenerative biology. This review summarizes the current knowledge on molecular and cellular processes implicated in post-infarction inflammation and discusses the potential beneficial role cell therapy might play in this process. Due to its immunomodulatory properties, the mesenchymal stromal cell is a candidate to reverse the disease progression of the infarcted heart towards heart failure, and therefore is emphasized in this review.
Myocardial infarction animal studies are used to study disease mechanisms and new treatment options. Typically, myocardial infarction (MI) is induced by permanent occlusion of the left anterior descending artery. Since in MI patients coronary blood flow is often restored new experimental models better reflecting clinical practice are needed. Here, permanent ischemia MI (PI group) was compared with transient ischemia (45 min) (IR group) in immunodeficient NOD/Scid mice. Cardiac function, infarct size, wall thickness and total collagen deposition were significantly reduced only in PI mice. Cardiac inflammatory cells and serum cytokine levels were less dynamic in IR animals compared to PI. So although IR better reflects clinical practice, it is secondary to PI for investigating cell therapy, since it induces too little damage to provide a measurable therapeutic window. MI did result in significant changes in the inflammatory state, indicating this immunodeficient mouse strain is valuable to study human cell therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/s40064-015-1128-y) contains supplementary material, which is available to authorized users.
Background Hypercholesterolemia is a major risk factor for ischemic heart disease including acute myocardial infarction. However, long-term effects of hypercholesterolemia in a rodent myocardial ischemia-reperfusion injury model are unknown. Therefore, the effects of diet-induced hypercholesterolemia on cardiac function and remodeling were investigated up to eight weeks after myocardial ischemia-reperfusion (MI-R) injury which was induced in either normocholesterolemic (NC-MI) or hypercholesterolemic (HC-MI) APOE*3-Leiden mice. Methods Left ventricular (LV) dimensions were serially assessed using parasternal long-axis echocardiography followed by LV pressure-volume measurements. Subsequently, infarct size and the inflammatory response were analyzed by histology and fluorescence-activated cell sorting (FACS) analysis. Results Intrinsic LV function eight weeks after MI-R was significantly impaired in HC-MI compared to NC-MI mice as assessed by end-systolic pressure, dP/dt MAX , and -dP/dt MIN . Paradoxically, infarct size was significantly decreased in HC-MI compared to NC-MI mice, accompanied by an increased wall thickness. Hypercholesterolemia caused a pre-ischemic peripheral monocytosis, in particular of Ly-6C hi monocytes whereas accumulation of macrophages in the ischemic-reperfused myocardium of HC-MI mice was decreased. Conclusion Diet-induced hypercholesterolemia caused impaired LV function eight weeks after MI-R injury despite a reduced post-ischemic infarct size. This was preceded by a pre-ischemic peripheral monocytosis, while there was a suppressed accumulation of inflammatory cells in the ischemic-reperfused myocardium after eight weeks. This experimental model using hypercholesterolemic APOE*3-Leiden mice exposed to MI-R seems suitable to study novel cardioprotective therapies in a more clinically relevant animal model.
BackgroundHuman mesenchymal stromal cells (MSCs) have been reported to preserve cardiac function in myocardial infarction (MI) models. Previously, we found a beneficial effect of intramyocardial injection of unstimulated human MSCs (uMSCs) on cardiac function after permanent coronary artery ligation. In the present study we aimed to extend this research by investigating the effect of intramyocardial injection of human MSCs pre-stimulated with the pro-inflammatory cytokine interferon-gamma (iMSCs), since pro-inflammatory priming has shown additional salutary effects in multiple experimental disease models.MethodsMI was induced in NOD/Scid mice by permanent ligation of the left anterior descending coronary artery. Animals received intramyocardial injection of uMSCs, iMSCs or PBS. Sham-operated animals were used to determine baseline characteristics. Cardiac performance was assessed after 2 and 14 days using 7-Tesla magnetic resonance imaging and pressure-volume loop measurements. Histology and q-PCR were used to confirm MSC engraftment in the heart.ResultsBoth uMSC and iMSC therapy had no significant beneficial effect on cardiac function or remodelling in contrast to our previous studies.ConclusionsAnimal models for cardiac MSC therapy appear less robust than initially envisioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.