Minute insects such as parasitic micro-wasps have high basic and applied importance for their widespread use as biocontrol agents. Their dispersal is a phenotype of particular interest. Classically, it is evaluated using field releases, but those are time consuming, costly, and their results highly variable, preventing high-throughput and repeatability. Alternatively, dispersal can be studied using small-scale assays, but those neglect important higher-scale processes. Consequently, proper evaluation of dispersal is often complicated or lacking in academic studies and biocontrol breeding programs. Here we introduce a new method, the double-spiral maze, that allows the study of spatial propagation of groups of micro-wasps at relevant scales (several hours and meters), retaining high throughput and experimental power. The method records the location of every individual at every time, enabling accurate estimates of diffusion coefficients or other dispersal metrics. We describe this affordable, scalable, and easy-to-implement method, and illustrate its application with a species of agricultural interest.
Background Understanding how behavioural dynamics, inter-individual variability and individual interactions scale-up to shape the spatial spread and dispersal of animal populations is a major challenge in ecology. For biocontrol agents, such as the microscopic Trichogramma parasitic wasps, an understanding of movement strategies is also critical to predict pest-suppression performance in the field. Methods We experimentally studied the spatial propagation of groups of parasitoids and their patterns of parasitism. We investigated whether population spread is density-dependent, how it is affected by the presence of hosts, and whether the spatial distribution of parasitism (dispersal kernel) can be predicted from the observed spread of individuals. Using a novel experimental device and high-throughput imaging techniques, we continuously tracked the spatial spread of groups of parasitoids over large temporal and spatial scales (8 h; and 6 m, ca. 12,000 body lengths). We could thus study how population density, the presence of hosts and their spatial distribution impacted the rate of population spread, the spatial distribution of individuals during population expansion, the overall rate of parasitism and the dispersal kernel (position of parasitism events). Results Higher population density accelerated population spread, but only transiently: the rate of spread reverted to low values after 4 h, in a “tortoise-hare” effect. Interestingly, the presence of hosts suppressed this transiency and permitted a sustained high rate of population spread. Importantly, we found that population spread did not obey classical diffusion, but involved dynamical switches between resident and explorer movement modes. Population distribution was therefore not Gaussian, though surprisingly the distribution of parasitism (dispersal kernel) was. Conclusions Even homogenous asexual groups of insects develop behavioural heterogeneities over a few hours, and the latter control patterns of population spread. Behavioural switching between resident and explorer states determined population distribution, density-dependence and dispersal. A simple Gaussian dispersal kernel did not reflect classical diffusion, but rather the interplay of several non-linearities at individual level. These results highlight the need to take into account behaviour and inter-individual heterogeneity to understand population spread in animals.
Minute insects such as parasitic micro-wasps have high basic and applied importance, for their widespread use as biocontrol agents. Their dispersal is a phenotype of particular interest. Classically, it is evaluated using field releases, but those are time consuming, costly, and their results highly variable, preventing high-throughput and repeatability. Alternatively, dispersal can be studied using small-scale assays, but those neglect important higher-scale processes. Consequently, proper evaluation of dispersal is often complicated or lacking in academic studies and biocontrol breeding programs. Here we introduce a new method, the double-spiral maze, that allows the study of spatial propagation at relevant scales (several hours and meters), retaining high throughput and experimental power. The method records the location of every individual at every time, enabling accurate precise estimates of diffusion coefficients or other dispersal metrics. We describe this affordable, scalable, and easy-to-implement method, and illustrate its application with a species of agricultural interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.