Thioflavin-T (ThT) is one of the most commonly used dyes for amyloid detection, but the origin of its fluorescence enhancement is not fully understood. Herein we have characterised the ThT fluorescence response upon binding to the Aβ(1-40) and Aβ(1-42) variants of the Alzheimer's-related peptide amyloid-β, in order to explore how the photophysical properties of this dye relates to structural and morphological properties of two amyloid fibril types formed by peptides with a high degree of sequence homology. We show that the steady-state ThT fluorescence is 1.7 times more intense with Aβ(1-40) compared to Aβ(1-42) fibrils in concentration matched samples prepared under quiescent conditions. By measuring the excited state lifetime of bound ThT, we also demonstrate a distinct difference between the two fibril isoforms, with Aβ(1-42) fibrils producing a longer ThT fluorescence lifetime compared to Aβ(1-40). The substantial steady-state intensity difference is therefore not explained by differences in fluorescence quantum yield. Further, we find that the ThT fluorescence intensity, but not the fluorescence lifetime, is dependent on the fibril preparation method (quiescent versus agitated conditions). We therefore propose that the fluorescence lifetime is inherent to each isoform and sensitively reports on fibril microstructure in the protofilament whereas the total fluorescence intensity relates to the amount of exposed β-sheet in the mature Aβ fibrils and hence to differences in their morphology. Our results highlight the complexity of ThT fluorescence, and demonstrate its extended use in amyloid fibril characterisation.
Covalently linking photosensitizers and catalysts in an inorganic-organic hybrid photocatalytic system is beneficial for efficient electron transfer between these components. However, general and straightforward methods to covalently attach molecular catalysts on the surface of inorganic semiconductors are rare. In this work, a classic rhenium bipyridine complex (Re catalyst) has been successfully covalently linked to the low toxicity CuInS quantum dots (QDs) by click reaction for photocatalytic CO reduction. Covalent bonding between the CuInS QDs and the Re catalyst in the QD-Re hybrid system is confirmed by UV-visible absorption spectroscopy, Fourier-transform infrared spectroscopy and energy-dispersive X-ray measurements. Time-correlated single photon counting and ultrafast time-resolved infrared spectroscopy provide evidence for rapid photo-induced electron transfer from the QDs to the Re catalyst. Upon photo-excitation of the QDs, the singly reduced Re catalyst is formed within 300 fs. Notably, the amount of reduced Re in the linked hybrid system is more than that in a sample where the QDs and the Re catalyst are simply mixed, suggesting that the covalent linkage between the CuInS QDs and the Re catalyst indeed facilitates electron transfer from the QDs to the Re catalyst. Such an ultrafast electron transfer in the covalently linked CuInS QD-Re hybrid system leads to enhanced photocatalytic activity for CO reduction, as compared to the conventional mixture of the QDs and the Re catalyst.
Achieving long-range charge transport in molecular systems is interesting to foresee applications of molecules in practical devices. However, designing molecular systems with pre-defined wire-like properties remains difficult due to the lack of understanding of the mechanism for charge transfer. Here we investigate a series of porphyrin oligomer-bridged donor-acceptor systems Fc-Pn-C60 (n = 1-4, 6). In these triads, excitation of the porphyrin-based bridge generates the fully charge-separated state, Fc(•+)-Pn-C60(•-), through a sequence of electron transfer steps. Temperature dependence of both charge separation (Fc-Pn*-C60 → Fc-Pn(•+)-C60(•-)) and recombination (Fc(•+)-Pn-C60(•-) → Fc-Pn-C60) processes was probed by time-resolved fluorescence and femtosecond transient absorption. In the long triads, two mechanisms contribute to recombination of Fc(•+)-Pn-C60(•-) to the ground state. At high temperatures (≥280 K), recombination via tunneling dominates for the entire series. At low temperatures (<280 K), unusual crossover from tunneling to hopping occurs in long triads. This crossover is rationalized by the increased lifetimes of Fc(•+)-Pn-C60(•-), hence the higher probability of reforming Fc-Pn(•+)-C60(•-) during recombination. We demonstrate that at 300 K, the weak distance dependence for charge transfer (β = 0.028 Å(-1)) relies on tunneling rather than hopping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.