thylacocephalans are enigmatic arthropods with an erratic palaeozoic and Mesozoic fossil record. in many of the few localities where they occur, they are quite abundant. this also holds true for the famennian thylacocephalan Layer in the Maider (eastern Anti-Atlas of Morocco), a small epicontinental basin hosting some strata with taphonomic properties of a conservation deposit yielding exceptionally preserved gnathostomes and non-vertebrates. in a thin argillaceous interval in the earliest middle famennian, thylacocephalans occur in such great numbers that they became eponyms of this unit. therein, we discovered a new taxon of thylacocephalans, Concavicaris submarinus sp. nov., which represent the oldest records of thylacocephalans from Africa. in the ct-imagery, the holotype of Concavicaris submarinus sp. nov. revealed anatomical details including its eyes, appendages and other soft parts. Sedimentary facies and faunal composition of the thylacocephalan Layer suggest that these animals populated the water column above the low-oxygen sea floor. Thus, thylacocephalans likely represented an important component of the diet of chondrichthyans and placoderms, which are quite common as well. The abundance of thylacocephalans in other conservation deposits like the Cleveland Shale (USA) and the Gogo formation (Australia) underline their pivotal role in Late Devonian pelagic food webs.
The timing of origin of eukaryotes and the sequence of eukaryogenesis are poorly constrained because their fossil record is difficult to interpret. Claims of fossilized organelles have been discounted on the unsubstantiated perception that they decay too quickly for fossilization. We experimentally characterized the pattern and time scale of decay of nuclei, chloroplasts, and pyrenoids in red and green algae, demonstrating that they persist for many weeks postmortem as physical substrates available for preservation, a time scale consistent with known mechanisms of fossilization. Chloroplasts exhibit greater decay resistance than nuclei; pyrenoids are unlikely to be preserved, but their presence could be inferred from spaces within fossil chloroplasts. Our results are compatible with differential organelle preservation in seed plants. Claims of fossilized organelles in Proterozoic fossils can no longer be dismissed on grounds of plausibility, prompting reinterpretation of the early eukaryotic fossil record and the prospect of a fossil record of eukaryogenesis.
Placoderms are an extinct group of early jawed vertebrates that play a key role in understanding the evolution of the gnathostome body plan, including the origin of novelties such as jaws, teeth, and pelvic fins. As placoderms have a poorly ossified axial skeleton, preservation of the mainly cartilaginous axial and fin elements is extremely rare, contrary to the heavily mineralized bones of the skull and thoracic armor. Therefore, the gross anatomy of the animals and body shape is only known from a few taxa, and reconstructions of the swimming function and ecology are speculative. Here, we describe articulated specimens preserving skull roofs, shoulder girdles, most fins, and body outlines of a newly derived arthrodire. Specimens of the selenosteid Amazichthys trinajsticae gen. et sp. nov. display a skull roof with reticular ornamentation and raised sensory lines like Driscollaspis, a median dorsal plate with a unique sharp posterior depression, the pelvic girdle, the proportions and shape of the pectoral, dorsal, and caudal fins as well as a laterally enlarged region resembling the lateral keel of a few modern sharks and bony fishes. Our new phylogenetic analyses support the monophyly of the selenosteid family and place the new genus in a clade with Melanosteus, Enseosteus, Walterosteus, and Draconichthys. The shape of its body and heterocercal caudal fin in combination with the pronounced “lateral keel” suggest Amazichthys trinajsticae was an active macropelagic swimmer capable of reaching high swimming speeds.
For the understanding of the evolution of jawed vertebrates and jaws and teeth, ‘placoderms’ are crucial as they exhibit an impressive morphological disparity associated with the early stages of this process. The Devonian of Morocco is famous for its rich occurrences of arthrodire ‘placoderms’. While Late Devonian strata are rich in arthrodire remains, they are less common in older strata. Here, we describe a large tooth-bearing jaw element of Leptodontichthys ziregensis gen. et sp. nov., an eubrachythoracid arthrodire from the Middle Devonian of Morocco. This species is based on a large posterior superognathal with a strong dentition. The jawbone displays features considered synapomorphies of Late Devonian eubrachythoracid arthrodires, with one posterior and one lateral row of conical teeth oriented postero-lingually. μCT-images reveal internal structures including pulp cavities and dentinous tissues. The posterior orientation of the teeth and the traces of a putative occlusal contact on the lingual side of the bone imply that these teeth were hardly used for feeding. Similar to Compagopiscis and Plourdosteus, functional teeth were possibly present during an earlier developmental stage and have been worn entirely. The morphological features of the jaw element suggest a close relationship with plourdosteids. Its size implies that the animal was rather large.
Trace fossils occur in several strata of the Devonian and Carboniferous of the eastern Anti-Atlas, but they are still poorly documented. Here, we describe a fossil swimming trace from strata overlying the Hangenberg Black Shale (correlation largely based on lithostratigraphy; Postclymenia ammonoid genozone, ca. 370 Ma old). We discuss the systematic position of the tracemaker and its body size. This ichnofossil is important for three main reasons: (1) it is considered here to be the first record of Undichna from the Devonian of Gondwana, as far as we know; (2) it is the oldest record of vertebrate trace fossils from Africa; (3) it provides a unique window into the behaviour of Late Devonian fishes for which body-fossils cannot provide direct evidence. Further, we put this discovery into the macroecological context of the palaeoenvironment following the Late Devonian Hangenberg biodiversity crisis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.