To improve the accuracy of dimensional x-ray computed tomography (CT), error sources have to be characterised and accounted for. A variety of error sources have been comprehensively described in the literature. However, the influence of geometrical distortion of the flat-panel detector has rarely been considered. In this paper, the deviation from nominal geometry of a flat-panel x-ray detector was characterised using a calibrated ball plate. In-plane deviations were separated from the detector topography by varying the source–detector distance, resulting in a 3D detector geometry. A correction model for arbitrary source–detector distances was developed, which reduced the maximum errors of sphere centre-to-centre distances in scale-corrected CT measurements from ±3.9 µm to below ±0.8 µm. This fivefold improvement emphasises the importance of such correction for dimensional CT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.