Our data show that RYGBP is associated with an improvement in the active GLP-1 and total PYY response to a liquid-meal intake. Moreover, we provide circumstantial evidence for a potential role of these gastrointestinal hormones on the decreased appetite after RYGBP.
Epigenetic mechanisms, in particular the enzymatic modification of histones, are a crucial element of cell differentiation, a regulated process that allows a precursor cell basically to turn into a different cell type while maintaining the same genetic equipment. We have previously described that the promoters of adipogenic genes display significant levels of dimethylation at the Lys 4 of histone H3 (H3K4) in preadipocytes, where these genes are still silenced, thus maintaining the chromatin of the precursor cell in a receptive state. Here, we show that the expression of several histone demethylases and methyltransferases increases during adipogenesis, suggesting an important role for these proteins in this process. Knockdown of the H3K4/K9 demethylase LSD1 results in markedly decreased differentiation of 3T3-L1 preadipocytes. This outcome is associated with decreased H3K4 dimethylation and increased H3K9 dimethylation at the promoter of transcription factor cebpa, whose expression must be induced >200-fold upon stimulation of differentiation. Thus, our data suggest that LSD1 acts to maintain a permissive state of the chromatin in this promoter by opposing the action of a H3K9 methyltransferase. Knockdown of H3K9 methyltransferase SETDB1 produced the opposite results, by decreasing H3K9 dimethylation and increasing H3K4 dimethylation levels at the cebpa promoter and favoring differentiation. These findings indicate that the histone methylation status of adipogenic genes as well as the expression and function of the proteins involved in its maintenance play a crucial role in adipogenesis.
Adipogenesis is regulated by a coordinated cascade of sequencespecific transcription factors and coregulators with chromatinmodifying activities that are between them responsible for the establishment of the gene expression pattern of mature adipocytes. Here we examine the histone H3 post-translational modifications occurring at the promoters of key adipogenic genes during adipocyte differentiation. We show that the promoters of apM1, glut4, gpd1, and leptin are enriched in dimethylated histone H3 Lys 4 (H3-K4) in 3T3-L1 fibroblasts, where none of these genes are yet expressed. A detailed study of the apM1 locus shows that H3-K4 dimethylation is restricted to the promoter region in undifferentiated cells and associates with RNA polymerase II (pol II) loading. The beginning of apM1 transcription at the early stages of adipogenesis coincides with promoter H3 hyperacetylation and H3-K4 trimethylation. At the coding region, H3 acetylation and dimethylation, as well as pol II binding, are found in cells at later stages of differentiation, when apM1 transcription reaches its maximal peak. This same pattern of histone modifications is detected in mouse primary preadipocytes and adipocytes but not in a related fibroblast cell line that is not committed to an adipocyte fate. Inhibition of H3-K4 methylation by treatment of 3T3-L1 cells with methylthioadenosine results in decreased apM1 gene expression as well as decreased adipogenesis. Taken together, our data indicate that H3-K4 dimethylation and pol II binding to the promoter of key adipogenic genes are distinguishing marks of cells that have undergone determination to a preadipocyte stage.The influence exerted by the post-translational modifications of histones over the regulation of gene expression has been extensively studied in the past few years. Numerous studies have shown a clear link between the pattern of histone modifications found at promoter regions and gene transcription, thus leading to the statement of the histone code hypothesis (1), which postulates that the pattern of histone post-translational modifications in a locus considerably extends the amount of information conveyed by the genomic code. Histone H3 and H4 hyperacetylation in promoter regions is closely correlated with gene activation in organisms ranging from yeast to mammals, and transcriptionally active euchromatin regions are highly enriched in acetylated histones (1-5). Unlike acetylation, histone H3 methylation can be equally associated with either transcriptional activation or repression. Methylation of the lysine residue Lys 4 of histone H3 (H3-K4) 3 correlates with activation of gene expression in most systems (2, 4 -7), whereas H3 Lys 9 (H3-K9) methylation is involved in the establishment and maintenance of silent heterochromatin regions (8). Moreover, lysine residues can be mono-, di-, or trimethylated in vivo, thus providing a further layer of complexity and exponentially increasing functional diversity (9, 10). The recent identification of LSD1, the first histone demethylase to be ch...
BackgroundCigarette smoking may contribute to pulmonary hypertension in chronic obstructive pulmonary disease by altering the structure and function of pulmonary vessels at early disease stages. The objectives of this study were to evaluate the effects of long-term exposure to cigarette smoke on endothelial function and smooth muscle-cell proliferation in pulmonary arteries of guinea pigs.Methods19 male Hartley guinea pigs were exposed to the smoke of 7 cigarettes/day, 5 days/week, for 3 and 6 months. 17 control guinea pigs were sham-exposed for the same periods. Endothelial function was evaluated in rings of pulmonary artery and aorta as the relaxation induced by ADP. The proliferation of smooth muscle cells and their phenotype in small pulmonary vessels were evaluated by immunohistochemical expression of α-actin and desmin. Vessel wall thickness, arteriolar muscularization and emphysema were assessed morphometrically. The expression of endothelial nitric oxide synthase (eNOS) was evaluated by Real Time-PCR.ResultsExposure to cigarette smoke reduced endothelium-dependent vasodilatation in pulmonary arteries (ANOVA p < 0.05) but not in the aorta. Endothelial dysfunction was apparent at 3 months of exposure and did not increase further after 6 months of exposure. Smoke-exposed animals showed proliferation of poorly differentiated smooth muscle cells in small vessels (p < 0.05) after 3 months of exposure. Prolonged exposure resulted in full muscularization of small pulmonary vessels (p < 0.05), wall thickening (p < 0.01) and increased contractility of the main pulmonary artery (p < 0.05), and enlargement of the alveolar spaces. Lung expression of eNOS was decreased in animals exposed to cigarette smoke.ConclusionIn the guinea pig, exposure to cigarette smoke induces selective endothelial dysfunction in pulmonary arteries, smooth muscle cell proliferation in small pulmonary vessels and reduced lung expression of eNOS. These changes appear after 3 months of exposure and precede the development of pulmonary emphysema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.