Mono- and disilicic acids were stabilized by uncharged polyethylene glycols (PEGs) in silica-supersaturated solutions (the starting solution contained 500 ppm/8.3 mM sodium orthosilicate, Na2SiO3·5H2O, expressed as SiO2) at pH = 7, most likely by hydrogen bonding between the silanol groups and -CH2-CH2-O-ether moieties. The stabilization was monitored by measuring molybdate-reactive silica and also by a combination of liquid- and solid-state (29)Si NMR spectroscopy. It depends on PEG concentration (20-100 ppm) and molecular weight (1550-20,000 Da). Two narrow (29)Si NMR signals characteristic for monosilicic acid (Q(0)) and disilicic acid (Q(1)) can be observed in (29)Si NMR spectra of solutions containing PEG 10000 with intensities distinctly higher than the control, that is, in the absence of PEG. Silica-containing precipitates are observed in the presence of PEG, in contrast to the gel formed in the absence of PEG. These precipitates exhibit similar degrees of silica polycondensation as found in the gel as can be seen from the (29)Si MAS NMR spectra. However, the (2)D HETCOR spectra show different (1)H NMR signal shifts: The signal due to H-bonded SiOH/H2O, which is found at 6 ppm in the control, is shifted to ~7 ppm in the PEG-containing precipitate. This indicates the formation of slightly stronger H-bonds than in the control sample, most likely between PEG and the silica species. The presence of PEG in these precipitates is unequivocally proven by (13)C CP MAS NMR spectroscopy. The (13)C signal of PEG significantly shifts and is much narrower in the precipitates as compared to the pristine PEG, indicating that PEG is embedded into the silica or at least bound to its surface (or both), and not phase separated. FT-IR spectra corroborate the above arguments. The H-bonding between silanol and ethereal O perturbs the band positions attributed to vibrations involving the O atom. This work may invoke an alternative way to envision silica species stabilization (prior to biosilica formation) in diatoms by investigating possible scenarios of uncharged biomacromolecules playing a role in biosilica synthesis.
A B S T R A C TThis paper focuses on scale control approaches using a number of "green" silica scale inhibitors. These findings may be of interest to chemists and engineers in the fields of cooling and boiler water, pulp and paper, detergents, oil, gas, etc. In light of increasing environmental concerns, this research acquires significant interest. Also, in this paper, the effects of biological and synthetic polymers on the formation of amorphous silica are discussed. The importance of synergies between polyelectrolytes on silica inhibition is also discussed. A specific example of a zwitterionic polymer phosphonomethylated chitosan (PCH) is further analyzed for its inhibitory activity. Specifically, the ability of PCH to retard silicic acid condensation at circumneutral pH in aqueous supersaturated solutions is explored. Furthermore, the effects of either purely cationic (polyethyleneimine, PEI) or purely anionic (carboxymethylinulin) polyelectrolytes on the inhibitory activity of PCH are systematically studied. It was found that the action of inhibitor blends is not cumulative. PCH/PEI blends stabilize the same level of silicic acid as PCH alone in both short-term (8 h) and long-term (72 h) experiments. Lastly, six polyethylene glycol polymers are used as silica scale inhibitors. Their Molecular Weights range from 1,550 to 20,000. There is a profound dependence of inhibitory performance on the additive Molecular Weight. However, this dependence seems to be less significant for Molecular Weights > 10,000. Mechanistic implications will be discussed as well.
Numerous publications report the existence of intracellular “Si” storage pools in diatoms representing intracellular concentrations of ca. 19–340 mM depending on the species. “Si” storage pools in diatom cells, if present, are supposed to accumulate “Si” for the production of new valves. The accumulated “Si” is then transported into the silicon deposition vesicle (SDV) where the new cell wall is synthesized. Interestingly, the reported concentrations of intracellular “Si” within the storage pool sometimes strongly exceed the solubility of monosilicic acid (ca. 2 mM pH <9). Various types of “Si” storage pools are discussed in the literature. It is usually assumed that “Si” species are stabilized by the association with some kind of organic material such as special proteins, thus forming a soluble silicic acid pools inside the cells. In an effort to mimic the above phenomenon, we have used a variety of neutral or cationic polymers that stabilize two soluble forms of “Si,” silicic and disilicic acids. These polymers include amine-terminated dendrimers, amine-containing linear polymers (with primary, secondary or tertiary amines), organic ammonium polymers, polyethylene glycol (PEG) neutral polymers, co-polymers (containing neutral and cationic parts) and phosphonium end-grafted PEG polymers. All the aforementioned polymeric entities affect the rate of silicic acid polycondensation and also the silica particle growth. Synergistic combinations of cationic and anionic polymers create in situ supramolecular assemblies that can also affect the condensation of silicic acid. Possible mechanisms for their effect on the condensation reaction are presented, with an eye towards their relevance to the “Si pools,” from a bioinspired/biomimetic point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.