Despite affecting millions of individuals, the etiology of hot flushes remains unknown. Here we review the physiology of hot flushes, CNS pathways regulating heat-dissipation effectors, and effects of estrogen on thermoregulation in animal models. Based on the marked changes in hypothalamic kisspeptin, neurokinin B and dynorphin (KNDy) neurons in postmenopausal women, we hypothesize that KNDy neurons play a role in the mechanism of flushes. In the rat, KNDy neurons project to preoptic thermoregulatory areas that express the neurokinin 3 receptor (NK3R), the primary receptor for NKB. Furthermore, activation of NK3R in the median preoptic nucleus, part of the heat-defense pathway, reduces body temperature. Finally, ablation of KNDy neurons reduces cutaneous vasodilatation and partially blocks the effects of estrogen on thermoregulation. These data suggest that arcuate KNDy neurons relay estrogen signals to preoptic structures regulating heat-dissipation effectors, supporting the hypothesis that KNDy neurons participate in the generation of flushes.
Estrogen withdrawal increases gonadotropin secretion and body weight, but the critical cell populations mediating these effects are not well understood. Recent studies have focused on a subpopulation of hypothalamic arcuate neurons that coexpress estrogen receptor α, neurokinin 3 receptor (NK(3)R), kisspeptin, neurokinin B, and dynorphin for the regulation of reproduction. To investigate the function of kisspeptin/neurokinin B/dynorphin (KNDy) neurons, a novel method was developed to ablate these cells using a selective NK(3)R agonist conjugated to the ribosome-inactivating toxin, saporin (NK(3)-SAP). Stereotaxic injections of NK(3)-SAP in the arcuate nucleus ablated KNDy neurons, as demonstrated by the near-complete loss of NK(3)R, NKB, and kisspeptin-immunoreactive (ir) neurons and depletion of the majority of arcuate dynorphin-ir neurons. Selectivity was demonstrated by the preservation of proopiomelanocortin, neuropeptide Y, and GnRH-ir elements in the arcuate nucleus and median eminence. In control rats, ovariectomy (OVX) markedly increased serum LH, FSH, and body weight, and these parameters were subsequently decreased by treatment with 17β-estradiol. KNDy neuron ablation prevented the rise in serum LH after OVX and attenuated the rise in serum FSH. KNDy neuron ablation did not completely block the suppressive effects of E(2) on gonadotropin secretion, a finding consistent with redundant pathways for estrogen negative feedback. However, regardless of estrogen status, KNDy-ablated rats had lower levels of serum gonadotropins compared with controls. Surprisingly, KNDy neuron ablation prevented the dramatic effects of OVX and 17β-estradiol (E(2)) replacement on body weight and abdominal girth. These data provide evidence that arcuate KNDy neurons are essential for tonic gonadotropin secretion, the rise in LH after removal of E(2), and the E(2) modulation of body weight.
Estrogen withdrawal in menopausal women leads to hot flushes, a syndrome characterized by the episodic activation of heat dissipation effectors. Despite the extraordinary number of individuals affected, the etiology of flushes remains an enigma. Because menopause is accompanied by marked alterations in hypothalamic kisspeptin/neurokinin B/dynorphin (KNDy) neurons, we hypothesized that these neurons could contribute to the generation of flushes. To determine if KNDy neurons participate in the regulation of body temperature, we evaluated the thermoregulatory effects of ablating KNDy neurons by injecting a selective toxin for neurokinin-3 expressing neurons [NK 3 -saporin (SAP)] into the rat arcuate nucleus. Remarkably, KNDy neuron ablation consistently reduced tail-skin temperature (T SKIN ), indicating that KNDy neurons facilitate cutaneous vasodilatation, an important heat dissipation effector. Moreover, KNDy ablation blocked the reduction of T SKIN by 17β-estradiol (E 2 ), which occurred in the environmental chamber during the light phase, but did not affect the E 2 suppression of T SKIN during the dark phase. At the high ambient temperature of 33°C, the average core temperature (T CORE ) of ovariectomized (OVX) control rats was significantly elevated, and this value was reduced by E 2 replacement. In contrast, the average T CORE of OVX, KNDy-ablated rats was lower than OVX control rats at 33°C, and not altered by E 2 replacement. These data provide unique evidence that KNDy neurons promote cutaneous vasodilatation and participate in the E 2 modulation of body temperature. Because cutaneous vasodilatation is a cardinal sign of a hot flush, these results support the hypothesis that KNDy neurons could play a role in the generation of flushes.reproduction | gonadotropin-releasing hormone | thermoregulation E strogen withdrawal leads to hot flushes in the majority of menopausal women (1). Hot flushes are also experienced by men and women treated with tamoxifen for breast cancer, men undergoing androgen-ablation therapy for prostate cancer, young oophorectomized women, and hypogonadal men (2, 3). A hot flush is characterized by episodic activation of heat dissipation effectors, including cutaneous vasodilatation, sweating, and behavioral thermoregulation. After a flush is initiated, the activation of heat dissipation mechanisms is so effective that core temperature frequently drops (4). Despite the vast numbers of individuals affected, the etiology of flushes remains an enigma.Hot flushes are closely timed with luteinizing hormone (LH) pulses, providing a clue that the generation of flushes is linked to the hypothalamic neural circuitry controlling pulsatile gonadotropin-releasing hormone (GnRH) secretion (5, 6). Current evidence suggests that pulsatile GnRH secretion is modulated by a subpopulation of neurons in the arcuate (infundibular) nucleus that express estrogen receptor α (ERα), neurokinin 3 receptor (NK 3 R), kisspeptin, neurokinin B (NKB), and dynorphin (7-11). In the hypothalamus of postmenopausal women, ...
The neuropeptide kisspeptin is essential for sexual maturation and reproductive function. In particular, kisspeptin-expressing neurons in the anterior rostral periventricular area of the third ventricle are generally recognized as mediators of estrogen positive feedback for the surge release of LH, which stimulates ovulation. Estradiol induces kisspeptin expression in the neurons of the rostral periventricular area of the third ventricle but suppresses kisspeptin expression in neurons of the arcuate nucleus that regulate estrogen-negative feedback. To focus on the intracellular signaling and response to estradiol underlying positive feedback, we used mHypoA51 cells, an immortalized line of kisspeptin neurons derived from adult female mouse hypothalamus. mHypoA51 neurons express estrogen receptor (ER)-α, classical progesterone receptor (PR), and kisspeptin, all key elements of estrogen-positive feedback. As with kisspeptin neurons in vivo, 17β-estradiol (E2) induced kisspeptin and PR in mHypoA51s. The ERα agonist, 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, produced similar increases in expression, indicating that these events were mediated by ERα. However, E2-induced PR up-regulation required an intracellular ER, whereas kisspeptin expression was stimulated through a membrane ER activated by E2 coupled to BSA. These data suggest that anterior hypothalamic kisspeptin neurons integrate both membrane-initiated and classical nuclear estrogen signaling to up-regulate kisspeptin and PR, which are essential for the LH surge.
Over the past two decades, the classical understanding of steroid action has been updated to include rapid, membrane-initiated, neurotransmitter-like functions. While steroids were known to function on very short time spans to induce physiological and behavioral changes, the mechanisms by which these changes occur are now becoming more clear. In avian systems, rapid estradiol effects can be mediated via local alterations in aromatase activity, which precisely regulates the temporal and spatial availability of estrogens. Acute regulation of brain-derived estrogens has been shown to rapidly affect sensorimotor function and sexual motivation in birds. In rodents, estrogens and progesterone are critical for reproduction, including preovulatory events and female sexual receptivity. Membrane progesterone receptor as well as classical progesterone receptor trafficked to the membrane mediate reproductive-related hypothalamic physiology, via second messenger systems with dopamine-induced cell signals. In addition to these relatively rapid actions, estrogen membrane-initiated signaling elicits changes in morphology. In the arcuate nucleus of the hypothalamus, these changes are needed for lordosis behavior. Recent evidence also demonstrates that membrane glucocorticoid receptor is present in numerous cell types and species, including mammals. Further, membrane glucocorticoid receptor influences glucocorticoid receptor translocation to the nucleus effecting transcriptional activity. The studies presented here underscore the evidence that steroids behave like neurotransmitters to regulate CNS functions. In the future, we hope to fully characterize steroid receptor-specific functions in the brain. IntroductionAt one time, the actions of steroid hormones were thought to mediate physiological changes through changes in gene transcription over an extended time course. This incomplete picture of steroid action has been filled in by the additional understanding that these compounds can have rapid, extragenomic, membrane-initiated actions. It has been known for decades that steroid hormones can have acute actions (within minutes) on physiology (Szego and Davis, 1967), the activity of neurons (Kelly et al., 1976), and the expression of behavior (Hayden-Hixson and Ferris, 1991). More recently, data demonstrate that steroids can and do function in ways that are "neurotransmitter-like," as they are synthesized at precise spatial locations within neural circuits and can act within minutes as local neuromodulators to rapidly regulate cognitive functions and behaviors (Balthazart and Ball,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.