Large mammals respond to seasonal changes in temperature and precipitation by behavioural and physiological flexibility. These responses are likely to differ between species with differing water dependencies. We used biologgers to contrast the seasonal differences in activity patterns, microclimate selection, distance to potential water source and body temperature of the water-independent gemsbok (Oryx gazella gazella) and water-dependent blue wildebeest (Connochaetes taurinus), free-living in the arid Kalahari region of Botswana. Gemsbok were more active nocturnally during the hot seasons than in the cold-dry season, while wildebeest showed no seasonal difference in their nocturnal activity level. Both species similarly selected shaded microclimates during the heat of the day, particularly during the hot seasons. Wildebeest were further than 10 km from surface water 30% or more of the time, while gemsbok were frequently recorded >20 km from potential water sources. In general, both species showed similar body temperature variation with high maximum 24-h body temperature when conditions were hot and low minimum 24-h body temperatures when conditions were dry, resulting in the largest amplitude of 24-h body temperature rhythm during the hot-dry period. Wildebeest thus coped almost as well as gemsbok with the fairly typical seasonal conditions that occurred during our study period. They do need to access surface water and may travel long distances to do so when local water sources become depleted during drought conditions. Thus, perennial water sources should be provided judiciously and only where essential.
Southern Africa is expected to experience increased frequency and intensity of droughts through climate change, which will adversely affect mammalian herbivores. Using bio-loggers, we tested the expectation that wildebeest (Connochaetes taurinus), a grazer with high water-dependence, would be more sensitive to drought conditions than the arid-adapted gemsbok (Oryx gazella gazella). The study, conducted in the Kalahari, encompassed two hot-dry seasons with similar ambient temperatures but differing rainfall patterns during the preceding wet season. In the drier year both ungulates selected similar cooler microclimates, but wildebeest travelled larger distances than gemsbok, presumably in search of water. Body temperatures in both species reached lower daily minimums and higher daily maximums in the drier season but daily fluctuations were wider in wildebeest than in gemsbok. Lower daily minimum body temperatures displayed by wildebeest suggest that wildebeest were under greater nutritional stress than gemsbok. Moving large distances when water is scarce may have compromised the energy balance of the water dependent wildebeest, a trade-off likely to be exacerbated with future climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.