BACKGROUND Prolonged-release fampridine (PR-fampridine, 4-aminopyridine) increases walking speed in the timed 25-foot walk test (T25FW) in some patients (timed-walk responders) with multiple sclerosis (MS). OBJECTIVE To explore the effects of PR-fampridine on different aspects of walking function and to identify associated gait modifications in subjects with MS. METHODS In this prospective, randomized, placebo-controlled, double-blind, phase II study (FAMPKIN; clinicaltrials.gov, NCT01576354), subjects received a 6-week course of oral placebo or PR-fampridine treatment (10 mg, twice daily) before crossing over. Using 3D-motion-analysis, kinematic and kinetic parameters were assessed during treadmill walking (primary endpoint). Clinical outcome measures included T25FW, 6-minute walk test (6MWT), and balance scales. Physical activity in everyday life was measured with an accelerometer device. RESULTS Data from 55 patients were suitable for analysis. Seventeen subjects were timed-walk responders under PR-fampridine. For the total study population and for responders, a significant increase in walking speed (T25FW) and distance (6MWT) was observed. Gait pattern changes were found at the single-subject level and correlated with improvements in the T25FW and 6MWT. Physical activity was increased in responders. CONCLUSION PR-fampridine improves walking speed, endurance, and everyday physical activity in a subset of subjects with MS and leads to individual modifications of the gait pattern.
Background: Increased plasma homocysteine levels have been described as an independent risk factor for Alzheimer’s disease (AD), but the underlying pathophysiology is unclear. Objective: This single-center, cross-sectional, correlational study analyzed homocysteine metabolism in 60 AD patients and 60 control subjects. Methods: Fasting plasma levels of vitamin B12, folate and homocysteine as well as cerebrospinal fluid (CSF) levels of folate derivates, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and homocysteine were measured. In addition, the apolipoprotein E (APOE) genotype was determined. Results: As expected, the APOE4 allele was significantly overrepresented in AD patients compared with controls (p < 0.001). Homocysteine plasma levels in the highest quartile were more frequent in the AD patients than in the controls (p = 0.008). In addition, AD patients had significantly lower CSF levels of the methyl group donor SAM (193 ± 31 vs. 207 ± 37 nmol/l; p = 0.032). Accordingly, the SAM/SAH ratio, which represents the methylation capacity, was significantly lower in the CSF of the AD patients (7.6 ± 2.4 vs. 9.1 ± 2.8; p = 0.003). Further, explorative analysis of all subjects showed that CSF SAM levels were lower in carriers of the APOE4 allele compared with noncarriers (189 ± 30 vs. 207 ± 36 nmol/l; p = 0.010). Of the individuals with CSF SAM levels in the lowest quartile, 63% carried the APOE4 allele compared with 17% of the individuals with CSF SAM levels in the highest quartile (Pearson: χ2 = 9.9; p = 0.002; odds ratio 0.126, 95% confidence interval 0.32–0.49). Conclusion: These data suggest that AD is associated with lower CSF SAM levels and that this is at least partly due to an association of the APOE4 allele with reduced SAM levels in the CSF.
Abstract. Hyperhomocysteinemia is associated with Alzheimer's disease (AD). The causality of this association is controversial. In this study we tested the effect of a hyperhomocysteinemia-inducing diet in the ArcA transgenic AD mouse model. At 14 months of age, the hyperhomocysteinemia-inducing diet yielded higher plasma homocysteine levels in ArcA mice compared with wild-type mice. Levels of plasma 5-methyltetrahydrofolate (5-MTHF) in 14-month-old mice on hyperhomocysteinemiainducing diet were lower in the transgenic than in the wild-type mice. The folate derivate 5-MTHF serves as cofactor in homocysteine metabolism. Oxidative stress, which occurs in the course of disease in the ArcA mice, consumes 5-MTHF. Thus, the transgenic mice may plausibly be more vulnerable to 5-MTHF-depleting effects of hyperhomocysteinemia and more vulnerable to hyperhomocysteinemia-inducing diet. This argues that AD pathology predisposes to hyperhomocysteinemia, i.e., as a facultative consequence of AD. However, we also observed that dietary-induced folate reduction and homocysteine increase was associated with an increase of plasma (young animals) and brain (older animals) amyloid- concentrations. This suggests that the hyperhomocysteinemia-inducing diet worsened pathology in the transgenic mice. In conclusion, this data may argue that folate reduction and hyperhomocysteinemia may contribute to neurodegeneration and may also be triggered by neurodegenerative processes, i.e., represent both a cause and a consequence of neurodegeneration. Such a vicious cycle may be breakable by dietary or supplementation strategies increasing the availability of 5-MTHF.
Background: Disturbances in the levels of one-carbon (1C) metabolism metabolites have been associated with a wide variety of neuropsychiatric diseases. Cerebrospinal fl uid (CSF) levels of homocysteine (Hcy) and the other 1C metabolites, nor their interrelatedness and putative determinants, have been studied extensively in a healthy population. Methods: Plasma and CSF samples from 100 individuals free from neuropsychiatric diseases were analyzed (55 male, 45 female; age 50 ± 17 years). In blood, we measured plasma Hcy, serum folate and serum vitamin B12. In CSF, we measured total Hcy, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and 5-methyltetrahydrofolate (5-methylTHF). Highly selective analytical methods like liquid chromatography combined with either mass spectrometry or fl uorescence detection were used. Results: CSF Hcy was inversely correlated with CSF 5-methylTHF and positively with plasma Hcy, independent of serum folate status. CSF SAH correlated with age, lower CSF 5-methylTHF and higher CSF Hcy. CSF 5-methylTHF showed independent negative correlations with age and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.