Vanillin (4-hydroxy-3-methoxybenzaldehyde) is an important flavour and aroma molecule, but is also of interest because of its biogenetic relationship to the phenylpropanoid pathway and to other molecules of physiological significance, notably salicylate. Recent progress towards characterisation of the biosynthesis of vanillin is reviewed. In Vanilla, there is some evidence that the route to vanillin-beta-D-glucoside may proceed from 4-coumaric acid via 4-hydroxybenzaldehyde, with glucoside formation occurring not necessarily as the final step, and possibly with the involvement of 4-hydroxybenzyl alcohol beta-D-glucoside tartrate bis-esters as "shunt" metabolites. This appears to be given tentative support by the recent partial characterisation of a 4-hydroxybenzaldehyde synthase from Vanilla. On the other hand, a well-characterised, CoA-dependent, non-oxidative chain-shortening mechanism to produce vanillin from ferulic acid, occurring as part of a pathway of hydroxycinnamate degradation in Pseudomonas, may not be representative of hydroxycinnamate chain-shortening mechanism(s) occurring in Vanilla and other plants. Nevertheless, by expression of the Pseudomonas enzyme 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL), attempts have been made to introduce a direct capacity for vanillin formation into model plants by diversion of the phenylpropanoid pathway. The results obtained have emphasised the obstacles to achieving the desired oxidation level (aldehyde) and ring substitution (4-hydroxy-3-methoxyphenyl), even when a substantial metabolic diversion is successfully achieved. Finally, the significance of the latest biosynthetic and biotechnological developments is reviewed briefly in relation to authentication of vanillin.
SummaryUnlike other eukaryotes, which can synthesize polyamines only from ornithine, plants possess an additional pathway from arginine. Occasionally non-enzymatic decarboxylation of ornithine could be detected in Arabidopsis extracts; however, we could not detect ornithine decarboxylase (ODC; EC 4. 1.1.17) enzymatic activity or any activity inhibitory to the ODC assay. There are no intact or degraded ODC sequences in the Arabidopsis genome and no ODC expressed sequence tags. Arabidopsis is therefore the only plant and one of only two eukaryotic organisms (the other being the protozoan Trypanosoma cruzi) that have been demonstrated to lack ODC activity. As ODC is a key enzyme in polyamine biosynthesis, Arabidopsis is reliant on the additional arginine decarboxylase (ADC; EC 4.1.1.9) pathway, found only in plants and some bacteria, to synthesize putrescine. By using site-directed mutants of the Arabidopsis ADC1 and heterologous expression in yeast, we show that ADC, like ODC, is a head-to-tail homodimer with two active sites acting in trans across the interface of the dimer. Amino acids K136 and C524 of Arabidopsis ADC1 are essential for activity and participate in separate active sites. Maximal activity of Arabidopsis ADC1 in yeast requires the presence of general protease genes, and it is likely that dimer formation precedes proteolytic processing of the ADC pre-protein monomer.
RNA viruses exist in genetically diverse populations due to high levels of mutations, many of which reduce viral fitness. Interestingly, intestinal bacteria can promote infection of several mammalian enteric RNA viruses, but the mechanisms and consequences are unclear. We screened a panel of 41 bacterial strains as a platform to determine how different bacteria impact infection of poliovirus, a model enteric virus. Most bacterial strains, including those extracted from cecal contents of mice, bound poliovirus, with each bacterium binding multiple virions. Certain bacterial strains increased viral co-infection of mammalian cells even at a low virus-to-host cell ratio. Bacteria-mediated viral co-infection correlated with bacterial adherence to cells. Importantly, bacterial strains that induced viral co-infection facilitated genetic recombination between two different viruses, thereby removing deleterious mutations and restoring viral fitness. Thus, bacteria-virus interactions may increase viral fitness through viral recombination at initial sites of infection, potentially limiting abortive infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.