MitoSOX-based assays are widely used to detect mitochondrial reactive oxygen species (ROS), especially superoxide. To this end, 5 μM MitoSOX is commonly used. In this ROS Protocols article, we described the flow cytometric protocol involving the use of various concentrations of MitoSOX (1, 2.5, 5 μM) for detecting mitochondrial ROS in control and mitochondrial DNA-deficient (MD) melanoma B16-F10 cells. We also compared the MitoSOX-based flow cytometry with lucigenin-derived chemiluminometry for their ability to reliably detect the relative differences in mitochondrial ROS formation in the control and MD cells. Our results suggested that 1 μM, rather than the commonly used 5 μM, appeared to be the optimal concentration of MitoSOX for detecting mitochondrial ROS via flow cytometry.
Detection and measurement of doxorubicin in biological systems, including body fluids, cells, and tissues, are instrumental in understanding the mechanisms of action of this widely used drug in treating cancer as well as in causing adverse effects. In this article, we, for the first time, characterized the use of fluorescence-based techniques, including fluorescence spectrometry, microscopy, and flow cytometry in measuring and/or detecting doxorubicin in biological systems, including cell lysates and cultured intact cells. We showed that doxorubicin has a maximum excitation and emission wavelength of 470 and 560 nm, respectively. The detection sensitivity by fluorescence spectrometry is less than 0.1 μM in buffers and cell lysates. Fluorescence microscopy demonstrated the readily detection of concentration-dependent accumulation of doxorubicin in cultured cells via either green or red fluorescence, but with green fluorescence showing a higher sensitivity of detection. Flow cytometry also revealed sensitive detection of doxorubicin accumulation in cell suspensions in a concentration-dependent manner. The readily and sensitive measurement and detection of doxorubicin by the above three fluorescence-based techniques has important implications in studying the cellular dynamics of doxorubicin in both cancer and normal cells under various experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.