Phytoremediation and the use of suitable amendments are well-known technologies for the mitigation of petroleum hydrocarbon (PHC) contaminations in terrestrial ecosystems. Our study is aimed at combining these two approaches to maximize their favorable effects. To this purpose, Helichrysum microphyllum subsp. tyrrhenicum, a Mediterranean shrub growing on sandy and semiarid soils, was selected. The weathered PHC-polluted matrix (3.3 ± 0.8 g kg−1 dry weight) from a disused industrial site was employed as the cultivation substrate with (WCAM) or without (UNAM) the addition and mixing of wood chips. Under the greenhouse conditions, the species showed a survival rate higher than 90% in the UNAM while the amendment administration restored the totality of the plant survival. At the end of the greenhouse test (nine months), the treatment with the wood chips significantly increased the moisture, dehydrogenase activity and abundance of the microbial populations of the PHC degraders in the substrate. Cogently, the residual amount of PHCs was significantly lower in the UNAM (3–92% of the initial quantity) than in the WCAM (3–14% of the initial quantity). Moreover, the crown diameter was significantly higher in the WCAM plants. Overall, the results establish the combined technology as a novel approach for landscaping and the bioremediation of sites chronically injured by PHC-weathered contaminations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.