Soil organisms play important roles in regulating ecosystem-level processes and the association of arbuscular mycorrhizal (AM) fungi with a plant species can be a central force shaping plant species' ecology. Understanding how mycorrhizal associations are affected by plant invasions may be a critical aspect of the conservation and restoration of native ecosystems. We examined the competitive ability of old world bluestem, a non-native grass (Caucasian bluestem [Bothriochloa bladhii]), and the influence of B. bladhii competition on AM root colonization of native warm-season prairie grasses (Andropogon gerardii or Schizachyrium scoparium), using a substitutive design greenhouse competition experiment. Competition by the non-native resulted in significantly reduced biomass production and AM colonization of the native grasses. To assess plant-soil feedbacks of B. bladhii and Bothriochloa ischaemum, we conducted a second greenhouse study which examined soil alterations indirectly by assessing biomass production and AM colonization of native warm-season grasses planted into soil collected beneath Bothriochloa spp. This study was conducted using soil from four replicate prairie sites throughout Kansas and Oklahoma, USA. Our results indicate that a major mechanism in plant growth suppression following invasion by Bothriochloa spp. is the alteration in soil microbial communities. Plant growth was tightly correlated with AM root colonization demonstrating that mycorrhizae play an important role in the invasion of these systems by Bothriochloa spp. and indicating that the restoration of native AM fungal communities may be a fundamental consideration for the successful establishment of native grasses into invaded sites.
The fungicide benomyl was the most commonly used biocide for both field and greenhouse experiments in which arbuscular mycorrhizal fungal (AMF) suppression is desired. Unfortunately benomyl is no longer manufactured and therefore is not available for experimental use and no fungicide has been proposed as a successful alternative for experimentally suppressing mycorrhizal fungi. In this study we examined the potential for the fungicide Topsin M (topsin) to suppress mycorrhizal symbiosis in both field and greenhouse experiments. Topsin reduced AMF colonization of the obligately mycotrophic, warm-season grass Andropogon gerardii with a large and significant reduction in plant biomass production. Topsin reduced AMF colonization of the facultatively mycotrophic, cool-season grass Pascopyron smithii but did not significantly reduce biomass production. Fertilization with nitrogen and phosphorus was able to compensate for reductions in biomass due to the application of fungicide because biomass production of plants that received topsin fungicide was not significantly different from fertilized controls not receiving topsin. While we are not advocating that topsin fungicide is a universal mechanism for mycorrhizal-suppressed controls, in systems where benomyl was found to be successful topsin appears to be a useful, available and successful alternative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.