The activity of constitutive promoters was compared in transgenic alfalfa plants using two marker genes. Three promoters, the 35S promoter from cauliflower mosaic virus (CaMV), the cassava vein mosaic virus (CsVMV) promoter, and the sugarcane bacilliform badnavirus (ScBV) promoter were each fused to the beta-glucuronidase (gusA) gene. The highest GUS enzyme activity was obtained using the CsVMV promoter and all alfalfa cells assayed by in situ staining had high levels of enzyme activity. The 35S promoter was expressed in leaves, roots, and stems at moderate levels, but the promoter was not active in stem pith cells, root cortical cells, or in the symbiotic zones of nodules. The ScBV promoter was active primarily in vascular tissues throughout the plant. In leaves, GUS activity driven by the CsVMV promoter was approximately 24-fold greater than the activity from the 35S promoter and 38-fold greater than the activity from the ScBV promoter. Five promoters, the double 35S promoter, figwort mosaic virus (FMV) promoter, CsVMV promoter, ScBV promoter, and alfalfa small subunit Rubisco (RbcS) promoter were used to control expression of a cDNA from Trichoderma atroviride encoding an endochitinase (ech42). Highest chitinase activity in leaves, roots, and root nodules was obtained in plants containing the CsVMV:ech42 transgene. Plants expressing the endochitinase were challenged with Phoma medicaginis var. medicaginis, the causal agent of spring black stem and leaf spot of alfalfa. Although endochitinase activity in leaves of transgenic plants was 50- to 2650-fold greater than activity in control plants, none of the transgenic plants showed a consistent increase in disease resistance compared to controls. The high constitutive levels of both GUS and endochitinase activity obtained demonstrate that the CsVMV promoter is useful for high-level transgene expression in alfalfa.
Globally, 15 Pythium species have been found to cause damping-off and seed rot of alfalfa, although surveys of species causing disease on alfalfa in the midwestern United States are lacking. Pathogens were isolated by a seedling baiting technique from soil samples of five alfalfa fields in Minnesota with high levels of damping-off. Of the 149 organisms isolated, 93 (62%) were identified as Pythium spp. and 43 (29%) were identified as Fusarium species. Pythium sylvaticum, P. irregulare, and P. ultimum var. ultimum were aggressive pathogens on germinating alfalfa seedlings. Strains of seven Pythium spp. pathogenic on soybean and corn were also pathogenic on alfalfa. The majority of the Fusarium isolates were identified as F. solani and F. oxysporum with a low number of F. redolens and F. incarnatum-equiseti. The F. oxysporum and F. incarnatum-equiseti strains were the most aggressive in causing seed and root rot. Pythium strains were sensitive to Apron XL (mefenoxam) and pyraclostrobin in vitro but efficacy varied when the fungicides were applied as a seed treatment. Seed treatments with Apron XL were more effective than treatments with Stamina against Pythium. The presence of aggressive, broad-host-range pathogens causing seed rot and damping-off suggests that new strategies are needed for managing this disease in alfalfa production systems.
In this manuscript we describe a set of novel alfalfa (Medicago sativa L.) plants that hyper-accumulate Phosphate ion (Pi) at levels three- to six-fold higher than wild-type. This alfalfa germplasm will have practical applications reclaiming Pi from contaminated or enriched soil or be used in conservation buffer strips to protect waterways from Pi run-off. Hyper-accumulating alfalfa plants were generated by targeted mutagenesis of PHOSPHATE2 (PHO2) using newly created CRISPR/Cas9 reagents and an improved mutant screening strategy. PHO2 encodes a ubiquitin conjugating E2 enzyme (UBC24) previously characterized in Arabidopsis thaliana, M. truncatula and Oryza sativa. Mutations of PHO2 disrupt Pi homeostasis resulting in Pi hyper-accumulation. Successful CRISPR/Cas9 editing of PHO2 demonstrates that this is an efficient mutagenesis tool in alfalfa despite its complex autotetraploid genome structure. Arabidopsis and M. truncatula ortholog genes were used to identify PHO2 haplotypes in outcrossing tetraploid M. sativa with the aim of generating heritable mutations in the two PHO2-like genes of alfalfa (PHO2-B and PHO2-C). After delivery of the reagent and regeneration from transformed leaf explants, plants with mutations in all four haplotypes of PHO2-B and PHO2-C were identified. These plants were evaluated for morphology, Pi accumulation, heritable transmission of targeted mutations, segregation of mutant haplotypes and removal of T-DNA(s). The Agrobacterium-mediated transformation assay and gene editing reagents reported here were also evaluated for further optimization for use in alfalfa functional genomic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.