Sensor faults frequently occur in wastewater treatment plant (WWTP) operation, leading to incomplete monitoring or poor control of the plant. Reliable operation of the WWTP considerably depends on the aeration control system, which is essentially assisted by the dissolved oxygen (DO) sensor. Results on the detection of different DO sensor faults, such as bias, drift, wrong gain, loss of accuracy, fixed value, or complete failure, were investigated based on Principal Components Analysis (PCA). The PCA was considered together with two statistical approaches, i.e., the Hotelling’s T2 and the Squared Prediction Error (SPE). Data used in the study were generated using the previously calibrated first-principle Activated Sludge Model no.1 for the Anaerobic-Anoxic-Oxic (A2O) reactors configuration. The equation-based model was complemented with control loops for DO concentration control in the aerobic reactor and nitrates concentration control in the anoxic reactor. The PCA data-driven model was successfully used for the detection of the six investigated DO sensor faults. The statistical detection approaches were compared in terms of promptness, effectiveness, and accuracy. The obtained results revealed the way faults originating from DO sensor malfunction can be detected and the efficiency of the detection approaches for the automatically controlled WWTP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.