The adverse pulmonary effects of asbestos are well accepted in scientific circles. However, the extrapulmonary consequences of asbestos exposure are not as clearly defined. In this review the potential for asbestos to produce diseases of the peritoneum, immune, gastrointestinal (GIT), and reproductive systems are explored as evidenced in published, peer-reviewed literature. Several hundred epidemiological, in vivo, and in vitro publications analyzing the extrapulmonary effects of asbestos were used as sources to arrive at the conclusions and to establish areas needing further study. In order to be considered, each study had to monitor extrapulmonary outcomes following exposure to asbestos. The literature supports a strong association between asbestos exposure and peritoneal neoplasms. Correlations between asbestos exposure and immune-related disease are less conclusive; nevertheless, it was concluded from the combined autoimmune studies that there is a possibility for a higher-than-expected risk of systemic autoimmune disease among asbestos-exposed populations. In general, the GIT effects of asbestos exposure appear to be minimal, with the most likely outcome being development of stomach cancer. However, IARC recently concluded the evidence to support asbestos-induced stomach cancer to be “limited.” The strongest evidence for reproductive disease due to asbestos is in regard to ovarian cancer. Unfortunately, effects on fertility and the developing fetus are under-studied. The possibility of other asbestos-induced health effects does exist. These include brain-related tumors, blood disorders due to the mutagenic and hemolytic properties of asbestos, and peritoneal fibrosis. It is clear from the literature that the adverse properties of asbestos are not confined to the pulmonary system.
Pulmonary fibrosis is a progressive, disabling disease with mortality rates that appear to be increasing in the western population, including the USA. There are over 140 known causes of pulmonary fibrosis as well as many unknown causes. Treatment options for this disease are limited due to poor understanding of the molecular mechanisms of the disease progression. However, recent progress in inflammasome research has greatly contributed to our understanding of its role in inflammation and fibrosis development. The inflammasome is a multiprotein complex that is an important component of both the innate and adaptive immune systems. Activation of proinflammatory cytokines following inflammasome assembly, such as IL-1β and IL-18, has been associated with development of PF. In addition, components of the inflammasome complex itself, such as the adaptor protein ASC have been associated with PF development. Recent evidence suggesting that the fibrotic process can be reversed via blockade of pathways associated with inflammasome activity may provide hope for future drug strategies. In this paper we will give an introduction to pulmonary fibrosis and its known causes. In addition, we will discuss the importance of the inflammasome in the development of pulmonary fibrosis as well as discuss potential future treatment options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.