a b s t r a c t a r t i c l e i n f oLocal, field-scale, VisNIR-DRS soil calibrations generally yield the most accurate predictions but require a substantial number of local calibration samples at every application site. Global to regional calibrations are more economically efficient, but don't provide sufficient accuracy for many applications. In this study, we quantified the value of augmenting a large global spectral library with relatively few local calibration samples for VisNIR-DRS predictions of soil clay content (clay), organic carbon content (SOC), and inorganic carbon content (IC). VisNIR models were constructed with boosted regression trees employing global, local + global, and local spectral data, using local samples from two low-relief, sedimentary bedrock controlled, semiarid grassland sites, and one granitic, montane, subalpine forest site, in Montana, USA. The local + global calibration yielded the most accurate SOC predictions for all three sites [Standard Error of Prediction (SEP) = 3.8, 6.7, and 26.2 g kg ), which also had the largest number of local calibration samples (N = 210). Using only samples from calcareous soils in the global spectral library combined with local samples produced the best SOC and IC results at the more arid of the two semiarid sites. Global samples alone never achieved more accurate predictions than the best local + global calibrations. For the temperate soils used in this study, the augmentation of a large global spectral library with relatively few local samples generally improved the prediction of soil clay, SOC, and IC relative to global or local samples alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.