Prenatal testosterone (T) excess increases ovarian follicular recruitment, follicular persistence, insulin resistance, and compensatory hyperinsulinemia. Considering the importance of insulin in ovarian physiology, in this study, using prenatal T- and dihydrotestosterone (DHT, a nonaromatizable androgen)-treated female sheep, we tested the hypothesis that prenatal androgen excess alters the intraovarian insulin signaling cascade and metabolic mediators that have an impact on insulin signaling. Changes in ovarian insulin receptor (INSRB), insulin receptor substrate 1 (IRS1), mammalian target of rapamycin (MTOR), phosphatidylinositol 3-kinase (PIK3), peroxisome proliferator-activated receptor-gamma (PPARG), and adiponectin proteins were determined at fetal (Days 90 and 140), postpubertal (10 mo), and adult (21 mo) ages by immunohistochemistry. Results indicated that these proteins were expressed in granulosa, theca, and stromal compartments, with INSRB, IRS1, PPARG, and adiponectin increasing in parallel with advanced follicular differentiation. Importantly, prenatal T excess induced age-specific changes in PPARG and adiponectin expression, with increased PPARG expression evident during fetal life and decreased antral follicular adiponectin expression during adult life. Comparison of developmental changes in prenatal T and DHT-treated females found that the effects on PPARG were programmed by androgenic actions of T, whereas the effects on adiponectin were likely by its estrogenic action. These results suggest a role for PPARG in the programming of ovarian disruptions by prenatal T excess, including a decrease in antral follicular adiponectin expression and a contributory role for adiponectin in follicular persistence and ovulatory failure.
Cystic ovarian disease (COD) is an important cause of infertility in cattle. The altered follicular dynamics and cellular differentiation observed in COD may be mediated through a disruption of the expression of steroid receptors and their associated transcriptional cofactors. The aim of this study was to determine the protein expression profiles of ESR1, ESR2, PGR, AR, NCOA3, NCOR2, and PHB2 (REA) in ovarian follicles in an experimental model of COD induced by the administration of ACTH. Ovaries were collected and follicles were dissected from heifers during the follicular phase (control) or from heifers treated with ACTH to induce the formation of ovarian follicular cysts. Ovaries were fixed, sectioned, and stained immunohistochemically for steroid receptors and the associated transcription factors. The relative expression of ESR1 was similar in follicular cysts and in tertiary follicles from both control and cystic cows and was significantly higher than in secondary follicles. The expression of ESR2 in the granulosa was higher in cystic follicles. No differences were seen for PGR. The expression of androgen receptor was significantly increased in tertiary follicles with lower immunostaining in cysts. The expression of NCOA3 was observed in the granulosa and theca with a significantly increased expression in the theca interna of cystic follicles. The highest levels of NCOR2 expression in granulosa, theca interna, and theca externa were observed in cysts. In granulosa cells, NCOR2 levels increase progressively as follicles mature and the treatment had no effect. In summary, ovaries from animals with induced COD exhibited altered steroid receptor expression compared with normal animals, as well as changes in the expression of their regulators. It is reasonable to suggest that in conditions characterized by altered ovulation and follicular persistence, such as COD, changes in the intra-ovarian expression of these proteins could play a role in their pathogenesis.
The objective of the present study was to characterise the expression and tissue distribution of steroid receptors (oestrogen receptor-alpha and -beta (ERalpha, ERbeta), androgen receptor (AR) and progesterone receptor (PR)) and steroidogenic enzymes (P450 aromatase (P450arom), 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and steroidogenic acute regulatory protein (StAR)) in letrozole-induced polycystic ovaries of rats. Changes in serum hormone levels, protein expression in whole ovaries by western blot analysis and protein localisation by immunohistochemistry were determined in female rats treated with the aromatase inhibitor letrozole and compared with controls in proestrous and diestrous rats. Increases in the serum LH, FSH and testosterone concentrations were observed in letrozole-treated rats whereas serum oestradiol and progesterone levels were reduced. Protein expression as analysed by western immunoblot was consistent with the immunohistochemical data. Letrozole treatment induced an increase in the expression of AR, StAR and 3beta-HSD and a decrease in ERbeta. ERalpha, PR and P450arom showed partial changes in relation to some cycle stages. These results indicate that cystogenesis in this experimental model is characterised by changes in steroid receptors and steroidogenic enzyme expression that may be essential to proper ovarian functioning and are in agreement with similar changes observed in women with PCOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.