Spent catalysts produced by oil refinery industries are regarded as an important secondary source for valuable metals. In particular, spent fluid catalytic cracking (FCC) catalysts represent a potential source for rare earth elements (REEs). This study aimed to exploit the leachability of spent FCC catalysts as a secondary source for La, by using an alternative organic acid lixiviant produced under optimized fungal fermentation conditions. The first chemical leaching tests revealed that citric acid (>100 mM) is a comparable alternative lixiviant to conventional inorganic acids (1 M) and that the La dissolution behavior changed significantly with different types of organic acids. The initial fungal fermentation conditions (e.g., inoculum level, substrate concentration, pH) largely affected the resultant biogenic acid composition, and its manipulation was possible in order to almost solely ferment citric acid (~130 mM) while controlling the production of unwanted oxalic acid. The performance of actual biogenic acids (direct use of cell-free spent media) and artificially reconstituted biogenic acids (a mixture of chemical reagents) was nearly identical, achieving a final La dissolution of ~74% at a pulp density of 5%. Overall, the microbiological fermentation of organic acids could become a promising approach to supply an efficient and environmentally benign alternative lixiviant for REE scavenging from spent FCC catalyst wastes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.