Cancer cells exploit the expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) to subvert T-cell mediated immunosurveillance1,2. The success of therapies that disrupt PD-L1 mediated tumour tolerance has highlighted the need to understand the molecular regulation of PD-L1 expression1. Using a genome-wide CRISPR/Cas9 screen we identified the uncharacterized protein CMTM6 to be a critical regulator of PD-L1 in a broad range of cancer cells. CMTM6 is a ubiquitously expressed, protein that binds PD-L1 and maintains its cell surface expression. CMTM6 is not required for PD-L1 maturation but co-localizes with PD-L1 at the plasma membrane and in recycling endosomes where it prevents PD-L1 from being targeted for lysosome-mediated degradation. Using a quantitative approach to profile the entire plasma membrane proteome we find that CMTM6 displays remarkable specificity for PD-L1. Importantly, CMTM6 depletion decreases PD-L1 without compromising cell surface expression of MHC Class I. CMTM6 depletion, via the reduction of PD-L1, significantly alleviates the suppression of tumour specific T-cell activity in vitro and in vivo. These findings provide novel insights into the biology of PD-L1 regulation, identify a previously unrecognised master regulator of this critical immune checkpoint and highlight a new potential therapeutic target to overcome immune evasion by tumour cells.
Purpose: Response rates to immune checkpoint blockade (ICB; anti-PD-1/anti-CTLA-4) correlate with the extent of tumor immune infiltrate, but the mechanisms underlying the recruitment of T cells following therapy are poorly characterized. A greater understanding of these processes may see the development of therapeutic interventions that enhance T-cell recruitment and, consequently, improved patient outcomes. We therefore investigated the chemokines essential for immune cell recruitment and subsequent therapeutic efficacy of these immunotherapies. Experimental Design: The chemokines upregulated by dual PD-1/CTLA-4 blockade were assessed using NanoStringbased analysis with results confirmed at the protein level by flow cytometry and cytometric bead array. Blocking/neutralizing antibodies confirmed the requirement for key chemokines/cytokines and immune effector cells. Results were confirmed in patients treated with immune checkpoint inhibitors using single-cell RNA-sequencing (RNA-seq) and paired survival analyses. Results: The CXCR3 ligands, CXCL9 and CXCL10, were significantly upregulated following dual PD-1/CTLA-4 blockade and both CD8 þ T-cell infiltration and therapeutic efficacy were CXCR3 dependent. In both murine models and patients undergoing immunotherapy, macrophages were the predominant source of CXCL9 and their depletion abrogated CD8 þ T-cell infiltration and the therapeutic efficacy of dual ICB. Single-cell RNA-seq analysis of patient tumor-infiltrating lymphocytes (TIL) revealed that CXCL9/ 10/11 was predominantly expressed by macrophages following ICB and we identified a distinct macrophage signature that was associated with positive responses to ICB. Conclusions: These data underline the fundamental importance of macrophage-derived CXCR3 ligands for the therapeutic efficacy of ICB and highlight the potential of manipulating this axis to enhance patient responses.
We have therefore revealed a potentially novel biomarker for the efficacy of anti-PD-1 that warrants further investigation in patients. Because our studies used SYN-115, a drug that has already undergone phase IIb testing in Parkinson disease, our findings have immediate translational relevance for patients with cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.