Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015 and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542–753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies.
Human rabies in developing countries can be prevented through interventions directed at dogs. Potential cost-savings for the public health sector of interventions aimed at animal-host reservoirs should be assessed. Available deterministic models of rabies transmission between dogs were extended to include dog-to-human rabies transmission. Model parameters were fitted to routine weekly rabid-dog and exposed-human cases reported in N Djamé na, the capital of Chad. The estimated transmission rates between dogs ( d) were 0.0807 km 2 /(dogs⅐week) and between dogs and humans ( dh ) 0.0002 km 2 /(dogs⅐week). The effective reproductive ratio (R e) at the onset of our observations was estimated at 1.01, indicating low-level endemic stability of rabies transmission. Human rabies incidence depended critically on dog-related transmission parameters. We simulated the effects of mass dog vaccination and the culling of a percentage of the dog population on human rabies incidence. A single parenteral dog rabies-mass vaccination campaign achieving a coverage of least 70% appears to be sufficient to interrupt transmission of rabies to humans for at least 6 years. The cost-effectiveness of mass dog vaccination was compared to postexposure prophylaxis (PEP), which is the current practice in Chad. PEP does not reduce future human exposure. Its cost-effectiveness is estimated at US $46 per disability adjusted life-years averted. Cost-effectiveness for PEP, together with a dog-vaccination campaign, breaks even with cost-effectiveness of PEP alone after almost 5 years. Beyond a time-frame of 7 years, it appears to be more cost-effective to combine parenteral dogvaccination campaigns with human PEP compared to human PEP alone.M ost human deaths from rabies occur in tropical resourcelimited countries (1). In Africa and Asia, an estimated 24,000 to 70,000 people die of rabies each year (2). The domestic dog is the main source of exposure and a primary vector for human rabies (3). Rabies in humans can be prevented by appropriate postexposure prophylaxis (PEP), a treatment not always available and affordable in resource-limited countries. Human rabies can also be prevented through vaccination of the animal vector. Recent work in Africa demonstrates that the intensity of rabies-control efforts seems to depend on the level of perceived prevalence. In the past decades, such efforts have not been able to interrupt cyclical epidemics showing significant synchrony between countries (4). However, evidence of successful and sustained vaccination programs to eliminate dog rabies from South America, Mexico, and the Caribbean provide hope for similar efforts in Africa (5). Unfortunately, human resources, diagnostic capacity, and financial resources of most sub-Saharan African countries are far away from those in South America. Bögel and Meslin show that in areas where the virus continually circulates in the dog population, over a period of 15 years, dog vaccination combined with PEP of dog-bite patients, is more cost-effective than PEP alone (6). In...
BackgroundAppropriate treatment of life-threatening Plasmodium falciparum malaria requires in-patient care. Although the proportion of severe cases accessing in-patient care in endemic settings strongly affects overall case fatality rates and thus disease burden, this proportion is generally unknown. At present, estimates of malaria mortality are driven by prevalence or overall clinical incidence data, ignoring differences in case fatality resulting from variations in access. Consequently, the overall impact of preventive interventions on disease burden have not been validly compared with those of improvements in access to case management or its quality.MethodsUsing a simulation-based approach, severe malaria admission rates and the subsequent severe malaria disease and mortality rates for 41 malaria endemic countries of sub-Saharan Africa were estimated. Country differences in transmission and health care settings were captured by use of high spatial resolution data on demographics and falciparum malaria prevalence, as well as national level estimates of effective coverage of treatment for uncomplicated malaria. Reported and modelled estimates of cases, admissions and malaria deaths from the World Malaria Report, along with predicted burden from simulations, were combined to provide revised estimates of access to in-patient care and case fatality rates.ResultsThere is substantial variation between countries’ in-patient admission rates and estimated levels of case fatality rates. It was found that for many African countries, most patients admitted for in-patient treatment would not meet strict criteria for severe disease and that for some countries only a small proportion of the total severe cases are admitted. Estimates are highly sensitive to the assumed community case fatality rates. Re-estimation of national level malaria mortality rates suggests that there is substantial burden attributable to inefficient in-patient access and treatment of severe disease.ConclusionsThe model-based methods proposed here offer a standardized approach to estimate the numbers of severe malaria cases and deaths based on national level reporting, allowing for coverage of both curative and preventive interventions. This makes possible direct comparisons of the potential benefits of scaling-up either category of interventions. The profound uncertainties around these estimates highlight the need for better data.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-016-1650-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.