Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a cytokine with potential therapeutic value against cancers because of its selective cytotoxicity to many transformed, but not normal, cells. The ''decoy receptors'' TRAIL-R3 (TR3) and TRAIL-R4 (TR4) were believed to negatively regulate TRAIL-induced cytotoxicity by competing for ligand binding with TRAIL-R1 (TR1) and TRAIL-R2 (TR2). Here, we show that inhibition of TRAILinduced apoptosis by TR4 critically depends on its association with TR2 via the NH 2-terminal preligand assembly domain overlapping the first partial cysteine-rich domain of both receptors. By contrast, ligand binding by TR4 is dispensable for its apoptosis inhibitory function, thereby excluding the possibility that TR4 was a ''decoy'' to inhibit apoptosis by binding up TRAIL. In primary CD8 ؉ T cells, which express only TR2 and TR4 and are resistant to TRAIL-induced apoptosis, stimulation with phorbol myristate acetate abrogated the ligand-independent interaction between TR2 and TR4 and enhanced their sensitivity to TRAIL-induced apoptosis. Hence, whereas most TNF receptors normally form only homotrimeric complexes, the preligand assembly domains in TR2 and TR4 permit mixed complex formation as a means to regulate apoptosis induction. We propose that TR4 is a ''regulatory'' rather than ''decoy'' receptor that inhibits apoptosis signaling by TRAIL through this previously uncharacterized ligand-independent mechanism. decoy receptors T he regulation of cell death by members of the TNF family plays a critical role in immune function and homeostasis (1). TRAIL is a TNF-like cytokine that selectively induces apoptosis in many tumor cells, but not in normal cells. Administration of recombinant TRAIL or antibodies against TR2 in several experimental tumor models exhibited potent antitumor activity with minimal hepatic toxicity (2-6). Moreover, recombinant TRAIL or agonist TRAIL receptor antibody often synergizes with chemotherapy or radiation to induce tumor-cell apoptosis (7-10). This unique property of TRAIL has prompted many to vaunt it as a potential therapeutic agent against malignant diseases. Despite its potency against tumor cells, the physiological function of TRAIL is largely unknown, although some reports have implicated TRAIL to be involved in tumor surveillance (11), target cell killing by various immune effector cells (12,13), and the regulation of innate immune responses (14).TRAIL binds to five distinct TNF receptor (TNFR)-like receptors, TR1 (TRAIL-R1͞DR4), TR2 (TRAIL-R2͞DR5͞ Killer͞Trick), TR3 (TRAIL-R3͞DcR1͞LIT͞TRID), TR4 (TRAIL-R4͞DcR2͞TRUNDD), and the soluble receptor osteoprotegerin (OPG). OPG is a soluble receptor that also binds another TNF-like cytokine called TRANCE͞RANK-L and may have a more prominent role in bone and myeloid cell development than in regulating TRAIL-induced apoptosis. The four membrane-anchored TRAIL receptors contain two complete cysteine-rich domains (CRDs) for ligand binding that are preceded at the NH 2 termini by a highly conserved...
Death receptor-induced programmed cell death (PCD) is crucial for the maintenance of immune homeostasis. However, interference of downstream death receptor signaling by genetic ablation or transgenic (Tg) expression of different apoptosis inhibitors often impairs lymphocyte activation. The viral FLICE (caspase-8)-like inhibitor proteins (v-FLIPs) are potent inhibitors of death receptor-induced apoptosis and programmed necrosis. We generated Tg mice expressing the v-FLIP MC159 from Molluscum contagiosum virus under the control of the H2Kb class I MHC promoter to examine the role of death receptor-induced PCD in the control of immune functions and homeostasis. We found that expression of MC159 led to lymphoproliferation and autoimmunity as exemplified by T and B lymphocyte expansion, accumulation of TCRαβ+CD3+B220+CD4−CD8− lymphocytes in secondary lymphoid organs, elevated serum Ig levels, and increased anti-dsDNA Ab titers. These phenotypes were caused by defective death receptor-induced apoptosis, but not by defective passive cell death in the absence of mitogenic stimulation. Lymphocyte activation was normal, as demonstrated by normal thymidine incorporation and CSFE dilution of T cells stimulated with anti-CD3 and anti-CD28 Abs. In addition, effector CD8+ T cell responses to acute and memory lymphocytic choriomeningitis virus infections were unaffected in the Tg mice. These phenotypes are reminiscent of the lpr and gld mice, and show that the v-FLIP MC159 is a bona fide PCD inhibitor that does not interfere with other essential lymphocyte functions. Thus, the MC159-Tg mice provide a model to study the effects of PCD in immune responses without hampering other important lymphocyte functions.
4312 Venous thromboembolism (VTE) is a national health concern, with an occurrence of over 900,000 cases per year and over 300,000 deaths per year. The total number of cases of VTE and the incidence of VTE-related deaths exceeds those related to both myocardial infarction and stroke. With an aging population, the incidence of VTE has also been increasing. Current treatment of venous thromboembolism with anti-coagulation is not optimal. There is a risk of bleeding, thrombus extension, pain and swelling as well as a recurrence rate of 3–9%. A significant inflammatory response occurs with venous thromboembolism. This inflammation can influence the extent of thrombosis, vein wall fibrosis and valve damage in the thrombosed vein. In a high percentage of VTE patients a condition of venous insufficiency known as post-thrombotic syndrome (PTS) can develop. PTS is associated with stasis ulceration, dermatitis and edema. Venous thrombogenesis is influenced by platelet (PLT) and leukocyte (WBC) adhesion as well as interactions between these cells. There is growing evidence to suggest that VWF interactions with PLT GPIbα can mediate some of these early events. This is evidenced by the reduction in PLT/WBC recruitment and reduced thrombus growth seen in either VWF or GPIbα deficient mice. These data point to a role for VWF in VTE. We sought to develop an aptamer to mouse VWF that would inhibit its interactions with platelet GPIbα. The availability of this tool would support investigations into the role of VWF in mouse models of VTE. Aptamers are oligonucleotides that fold into three-dimensional structures and specifically bind to ligands with high affinity. Aptamers bound to proteins can modify and/or inhibit protein-protein interactions. Using an in vitro selection method known as Systematic Evolution of Ligands by EXponential enrichment (SELEX), we generated aptamers that bind to murine VWF (mVWF) from a modified RNA pool. Nine of these aptamers bind to mVWF with single-digit or sub- nanomolar affinity. A subset of these aptamers also binds to human VWF (hVWF). The aptamers that bind to hVWF inhibit platelet adhesion/aggregation in human whole blood. Further in vitro characterization has demonstrated that five of these aptamers specifically inhibit the interaction between mVWF and recombinant human GPIbα, but do not interfere with the binding of mVWF to collagen. These five aptamers were also active in vivo in a FeCl3-induced thrombosis model in mice. Intravenous injection of the anti-mVWF aptamers prolonged time to occlusion from a baseline of 10–15 minutes to either 25–35 minutes or >40 minutes in this model, depending on the aptamer. These results demonstrate that we have identified high affinity aptamers to mVWF that specifically disrupt mVWF binding to platelets and have an antithrombotic effect in an in vivo mouse model of thrombosis. These aptamers will allow us to investigate the role of VWF in murine models of venous thrombosis. This project was supported by Award Number R01HL095091 from the National Heart, Lung, And Blood Institute. Disclosures: Woelfel: Archemix Corporation: Employment. Wagner:Archemix Corporation: Employment. McGinness:Archemix Corporation: Employment. Schaub:Archemix Corporation: Employment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.