A growing number of bacterial species undergo epigenetic phase variation due to variable expression or specificity of DNA-modifying enzymes. For pneumococci, this phase variation has long been appreciated as being revealed by changes in colony opacity, which are reflected in changes in expression or accessibility of factors on the bacterial surface. Recent work showed that recombination-generated variation in alleles of the HsdS DNA methylase specificity subunit mediated pneumococcal phase variation. We generated phase-locked populations of S. pneumoniae TIGR4 expressing a single nonvariant hsdS allele and observed significant differences in gene expression and virulence. These results highlight the importance of focused pathogenesis studies within specific phase types. Moreover, the generation of single-allele hsdS constructs will greatly facilitate such studies.
Background: Two atypical serogroup 6 strains have been discovered. Results: They express capsular polysaccharide with two different repeating units and share A150T mutation in WciN␣. Conclusion: This mutation shifts WciN␣ from a galactosyltransferase to a bi-specific glycosyltransferase, creating two new hybrid serotypes: 6F and 6G. Significance: Pneumococci can change capsule serotypes by point mutations and may alter their interactions with the immunity of the host.
Streptococcus pneumoniae expressing serogroup 6 capsules frequently causes pneumococcal infections and the evolutionary origins of the serogroup 6 strains have been extensively studied. However, these studies were performed when serogroup 6 had only two known members (serotypes 6A and 6B) and before the two new members (serotypes 6C and 6D) expressing wciNβ were found. We have therefore reinvestigated the evolutionary origins of serogroup 6 by examining the profiles of the capsule gene loci and the multilocus sequence types (MLSTs) of many serogroup 6 isolates from several continents. We confirmed that there are two classes of cps locus sequences for serogroup 6 isolates. In our study, class 2 cps sequences were limited to a few serotype 6B isolates. Neighbour-joining analysis of cps sequence profiles showed a distinct clade for 6C and moderately distinct clades for class 1 6A and 6B sequences. The serotype 6D cps profile was found within the class 1 6B clade, suggesting that it was created by recombination between 6C and 6B cps loci. Interestingly, all 6C isolates also had a unique wzy allele with a 6 bp deletion. This suggests that serotype switching to 6C involves the transfer of a large (>4 kb) gene segment that includes both the wciNβ allele and the ‘short’ wzy allele. The MLST studies of serotype 6C isolates suggest that the 6C cps locus is incorporated into many different pneumococcal genomic backgrounds but that, interestingly, 6C cps may have preferentially entered strains of the same genomic backgrounds as those of serotype 6A.
Background: Streptococcus pneumoniae serotype 11D capsular polysaccharide (CPS) structure is unknown. Results: Serotype 11D PS contains two different repeating units; one has ␣GlcNAc, and the other contains ␣Glc. Conclusion: The 11D CPS is due to the bispecific glycosyltransferase WcrL. Based on codon 112, WcrL can transfer ␣Glc, ␣GlcNAc, or both. Significance: Minimal genetic changes can make bacteria produce different polysaccharides.
Even in the vaccine era, Streptococcus pneumoniae (the pneumococcus) remains a leading cause of otitis media, a significant public health burden, in large part because of the high prevalence of nasal colonization with the pneumococcus in children. The primary pneumococcal neuraminidase, NanA, which is a sialidase that catalyzes the cleavage of terminal sialic acids from host glycoconjugates, is involved in both of these processes. Coinfection with influenza A virus, which also expresses a neuraminidase, exacerbates nasal colonization and disease by S. pneumoniae, in part via the synergistic contributions of the viral neuraminidase. The specific role of its pneumococcal counterpart, NanA, in this interaction, however, is less well understood. We demonstrate in a mouse model that NanA-deficient pneumococci are impaired in their ability to cause both nasal colonization and middle ear infection. Coinfection with neuraminidase-expressing influenza virus and S. pneumoniae potentiates both colonization and infection but not to wild-type levels, suggesting an intrinsic role of NanA. Using in vitro models, we show that while NanA contributes to both epithelial adherence and biofilm viability, its effect on the latter is actually independent of its sialidase activity. These data indicate that NanA contributes both enzymatically and nonenzymatically to pneumococcal pathogenesis and, as such, suggest that it is not a redundant bystander during coinfection with influenza A virus. Rather, its expression is required for the full synergism between these two pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.