Experimental aerodynamic investigations of the NASA Common ResearchModel have been conducted in the NASA Langley National Transonic Facility and the NASA Ames 11-ft wind tunnel. Data have been obtained at chord Reynolds numbers of 5 million for five different configurations at both wind tunnels. Force and moment, surface pressure and surface flow visualization data were obtained in both facilities but only the force and moment data are presented herein. Nacelle/pylon, tail effects and tunnel to tunnel variations have been assessed. The data from both wind tunnels show that an addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5 and that the tail effects also follow the expected trends. Also, all of the data shown fall within the 2-sigma limits for repeatability. The tunnel to tunnel differences are negligible for lift and pitching moment, while the drag shows a difference of less than ten counts for all of the configurations. These differences in drag may be due to the variation in the sting mounting systems at the two tunnels.
An experimental investigation of the NASA Common Research Model was conducted in the NASA Langley National Transonic Facility and NASA Ames 11-foot Transonic Wind Tunnel Facility for use in the Drag Prediction Workshop. As data from the experimental investigations was collected, a large difference in moment values was seen between the experiment and computational data from the 4 th Drag Prediction Workshop. This difference led to a computational assessment to investigate model support system interference effects on the Common Research Model. The results from this investigation showed that the addition of the support system to the computational cases did increase the pitching moment so that it more closely matched the experimental results, but there was still a large discrepancy in pitching moment. This large discrepancy led to an investigation into the shape of the as-built model, which in turn led to a change in the computational grids and re-running of all the previous support system cases. The results of these cases are the focus of this paper.
Nomenclature
b= wing span, in. c = wing mean aerodynamic chord, in. = CRM wing/body/tail=0° configuration WBT0ss = CRM wing/body/tail=0° with support system configuration WBT0ssa = CRM wing/body/tail=0° with support system and arc sector configuration x/c = longitudinal distance from wing leading edge nondimensionalized by local wing chord α = angle-of-attack, degrees δ = change in per unit area values η = fraction of wing semi-span φ = radial station, degrees Δ = change in total values
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.