Hereditary spastic paraplegia (HSP) refers to a group of genetically heterogeneous neurodegenerative motor neuron disorders characterized by progressive age-dependent loss of corticospinal motor tract function, lower limb spasticity, and weakness. Recent clinical use of next generation sequencing (NGS) methodologies suggests that they facilitate the diagnostic approach to HSP, but the power of NGS as a first-tier diagnostic procedure is unclear. The larger-than-expected genetic heterogeneity—there are over 80 potential disease-associated genes—and frequent overlap with other clinical conditions affecting the motor system make a molecular diagnosis in HSP cumbersome and time consuming. In a single-center, cross-sectional study, spanning 4 years, 239 subjects with a clinical diagnosis of HSP underwent molecular screening of a large set of genes, using two different customized NGS panels. The latest version of our targeted sequencing panel (SpastiSure3.0) comprises 118 genes known to be associated with HSP. Using an in-house validated bioinformatics pipeline and several in silico tools to predict mutation pathogenicity, we obtained a positive diagnostic yield of 29% (70/239), whereas variants of unknown significance (VUS) were found in 86 patients (36%), and 83 cases remained unsolved. This study is among the largest screenings of consecutive HSP index cases enrolled in real-life clinical-diagnostic settings. Its results corroborate NGS as a modern, first-step procedure for molecular diagnosis of HSP. It also disclosed a significant number of new mutations in ultra-rare genes, expanding the clinical spectrum, and genetic landscape of HSP, at least in Italy.
Background and purpose
Heterozygous mutations in the STUB1 gene have recently been associated with an autosomal dominant form of spinocerebellar ataxia (SCA) associated with cerebellar cognitive‐affective syndrome (CCAS), named SCA48.
Methods
Molecular screening was performed in a cohort of 235 unrelated patients with adult‐onset, autosomal dominant (17) or sporadic (218) cerebellar ataxia, negative for pathological trinucleotide expansions in the common SCAs, FRDA and FXTAS loci, by using targeted multigene panels or whole‐exome sequencing. Bioinformatics analyses, detailed neurological phenotyping and family segregation studies corroborated the pathogenicity of the novel STUB1 mutations. Clinico‐diagnostic findings were reviewed to define the phenotypic spectrum.
Results
Eight heterozygous STUB1 mutations were identified, six of which were novel in 11 patients from eight index families, giving an estimated overall frequency of 3.4% (8/235) for SCA48 in our study cohort, rising to 23.5% (4/17) when considering only familial cases. All our SCA48 patients had cerebellar ataxia and dysarthria associated with cerebellar atrophy on brain magnetic resonance imaging; of note, many cases were also associated with parkinsonism, chorea and dystonia. CCAS also occurred frequently, whereas definite signs of pyramidal tract dysfunction and peripheral nervous system involvement were absent. One SCA48 patient presented with hypogonadism, associated with other autoimmune endocrine dysfunctions.
Conclusions
Our results support SCA48 as a significant cause of adult‐onset SCA. Besides CCAS, our SCA48 patients often showed movement disorders and other clinical manifestations previously described in SCAR16, linked to biallelic variants in the same gene, thus suggesting a continuous clinical spectrum and significant overlap amongst recessive and dominantly inherited mutations in STUB1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.