With the objective of studying the conformational and
macrocyclic effects of selected metal chelates on their peroxidase
activities, Cu2+ and Fe3+ complexes were synthesized
with a macrocyclic derivative of ethylenediaminetetraacetic acid and o-phenylenediamine (abbreviated as edtaodH2)
and its new open-chain analogue (edtabzH2). The Fe3+ complex of edtaodH2 has a peroxidase-like activity,
whereas the complex of edtabzH2 does not. The X-ray study
of the former shows the formation of a dimeric molecule {[Fe(edtaod)]2O} in which each metal with an octahedral coordination is
overposed over the macrocyclic cavity, as a result of rigid macrocyclic
frame, to form an Fe–O–Fe bridge; the exposure of the
central metal to the environment facilitates the capture of oxygen
to drive the biomimetic activity. The peroxidase-inactive Fe3+ complex consists of a mononuclear complex ion [Fe(edtabz)(H2O)]+, the metal ion of which is suited in a distorted
pentagonal bipyramid to be protected from environmental oxygen. The
copper(II) complexes, which have mononuclear structures with high
thermodynamic stability compared with the iron(III) complexes, show
no peroxidase activity. The steric effects play a fundamental role
in the biomimetic activity.
Glutathione S-transferases are a family of detoxifying enzymes that catalyze the conjugation of reduced glutathione (GSH) with different xenobiotic compounds using either Ser, Tyr, or Cys as a primary catalytic residue. We identified a novel GST in the genome of the shrimp pathogen V. parahaemolyticus FIM- S1708+, a bacterial strain associated with Acute Hepatopancreatic Necrosis Disease (AHPND)/Early Mortality Syndrome (EMS) in cultured shrimp. This new GST class was named Gtt2. It has an atypical catalytic mechanism in which a water molecule instead of Ser, Tyr, or Cys activates the sulfhydryl group of GSH. The biochemical properties of Gtt2 from Vibrio parahaemolyticus (VpGSTT2) were characterized using kinetic and crystallographic methods. Recombinant VpGSTT2 was enzymatically active using GSH and CDNB as substrates, with a specific activity of 5.7 units/mg. Low affinity for substrates was demonstrated using both Michaelis–Menten kinetics and isothermal titration calorimetry. The crystal structure showed a canonical two-domain structure comprising a glutathione binding G-domain and a hydrophobic ligand H domain. A water molecule was hydrogen-bonded to residues Thr9 and Ser 11, as reported for the yeast Gtt2, suggesting a primary role in the reaction. Molecular docking showed that GSH could bind at the G-site in the vicinity of Ser11. G-site mutationsT9A and S11A were analyzed. S11A retained 30% activity, while T9A/S11A showed no detectable activity. VpGSTT2 was the first bacterial Gtt2 characterized, in which residues Ser11 and Thr9 coordinated a water molecule as part of a catalytic mechanism that was characteristic of yeast GTT2. The GTT2 family has been shown to provide protection against metal toxicity; in some cases, excess heavy metals appear in shrimp ponds presenting AHPND/EMS. Further studies may address whether GTT2 in V. parahaemolyticus pathogenic strains may provide a competitive advantage as a novel detoxification mechanism.
A new acyclic bismuth complex (Bi-edtabz) was synthesized from a mixture of solutions of the ligand (EDTA-based phenylene) and bismuth under acidic conditions. Its anti-virulence properties were evaluated against Escherichia coli O157: H7, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enterica sub. enterica serovar Typhimurium and Staphylococcus aureus. The bismuth complex was characterized by NMR, UV-Vis, FTIR, ESI/MS and TG. Furthermore, Bi-edtabz complex at 0.25–1 mM presented better antibiofilm properties against E. coli O157: H7 and S. aureus with values of biomass reduction of 30.1–57.1% and 37.8–55.5%, respectively, compared with the ligand edtabz. While biofilm formation of L. monocytogenes, P. aeruginosa and Salmonella Typhimurium was most impaired by edtabz (biomass reduction of 66.1–100%, 66.4–88.0% and 50.9–67.1%), respectively. Additionally, Bi-edtabz inhibited the swimming motility of E. coli O157: H7 (12.5%) and colony spread of S. aureus (47.2%) at 1 mM and inhibited violacein production, a quorum-sensing related pigment of the biosensor strain Chromobacterium violaceum. Hence, edtabz and the Bi-edtabz complex can be used as novel anti-virulence agents against pathogenic bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.