The aberrant activation of tyrosine kinases represents an important oncogenic mechanism, and yet the majority of such events remain undiscovered. Here we describe a bead-based method for detecting phosphorylation of both wild-type and mutant tyrosine kinases in a multiplexed, high-throughput and low-cost manner. With the aim of establishing a tyrosine kinase-activation catalog, we used this method to profile 130 human cancer lines. Follow-up experiments on the finding that SRC is frequently phosphorylated in glioblastoma cell lines showed that SRC is also activated in primary glioblastoma patient samples and that the SRC inhibitor dasatinib (Sprycel) inhibits viability and cell migration in vitro and tumor growth in vivo. Testing of dasatinib-resistant tyrosine kinase alleles confirmed that SRC is indeed the relevant target of dasatinib, which inhibits many tyrosine kinases. These studies establish the feasibility of tyrosine kinome-wide phosphorylation profiling and point to SRC as a possible therapeutic target in glioblastoma.
Diagnostic advancements for prostate cancer have so greatly increased early detections that hope abounds for improved patient outcomes. However, histopathology, which guides treatment, often subcategorizes aggressiveness insufficiently among moderately differentiated Gleason score (6 and 7) tumors (>70% of new cases). Here, we test the diagnostic capability of prostate metabolite profiles measured with intact tissue magnetic resonance spectroscopy and the sensitivity of local prostate metabolites in predicting prostate cancer status. Prostate tissue samples (n = 199) obtained from 82 prostate cancer patients after prostatectomy were analyzed with high-resolution magic angle spinning proton magnetic resonance spectroscopy, and afterwards with quantitative pathology. Metabolite profiles obtained from principal component analysis of magnetic resonance spectroscopy were correlated with pathologic quantitative findings by using linear regression analysis and evaluated against patient pathologic statuses by using ANOVA. Paired t tests show that tissue metabolite profiles can differentiate malignant from benign samples obtained from the same patient (P < 0.005) and correlate with patient serum prostate-specific antigen levels (P < 0.006). Furthermore, metabolite profiles obtained from histologically benign tissue samples of Gleason score 6 and 7 prostates can delineate a subset of less aggressive tumors (P < 0.008) and predict tumor perineural invasion within the subset (P < 0.03). These results indicate that magnetic resonance spectroscopy metabolite profiles of biopsy tissues may help direct treatment plans by assessing prostate cancer pathologic stage and aggressiveness, which at present can be histopathologically determined only after prostatectomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.