Although the neonatal and infancy period is short, it is well documented that the early neonatal environment is critical for appropriate physical, behavioral, and cognitive development that lasts into adulthood. Dairy calves are commonly removed from the dam shortly after birth and raised in individual housing and fed limited milk allowances (4 to 6 L/d) in commercial farms around the world (conventional raising). Individual housing was developed to promote health status and facilitate individual animal monitoring. However, it is associated with high labor demand, and early life social isolation is associated with cognitive and behavioral abnormalities. Recently, group housing and enhanced milk-feeding programs are being increasingly adopted by farms; these practices more closely resemble the social and nutritional environments in natural or seminatural environments when the calf is raised with the dam. Conventional raising may lead to short- and long-term effects when compared to calves raised with the dam or peers. Short-term effects of conventional raising include impaired social skills when introduced to novel peers, reduced consumption of novel feeds, increased activity in a novel environment, and signs of hunger associated with limited milk intake and poor growth during the preweaning period. Evidence also suggests that the long-term effects of conventional artificial raising systems include behavioral differences, such as lower social submissiveness, increased heart rate and cortisol when presented with a novel environment, and production differences such as milk yield and reproductive performance. However, research on the long-term effects of maternal, social, physical, and nutritional restrictions in early life is still limited and should be encouraged. More research is needed to determine the long-term effects of artificial raising systems (individual, group housing, dam-raised) on future behavior, cognition, performance, and health parameters in dairy calves.
Simple SummaryPrecision technologies are often integrated on dairy farms to monitor individual animal health. One precision technology used is a bolus that is inserted into a cows’ reticulorumen to monitor reticulorumen temperature. Although it is known that both water temperature and water quantity ingested are associated with changes in reticulorumen temperature, limited quantifiable research exists on the impact and magnitude of controlled water intake on reticulorumen temperature. We conducted an observational study to determine the effect of natural water ingestion on reticulorumen temperature, and performed a modified Latin square where cows were drenched with specific water quantities at specific temperatures to determine the effect of controlled water intake on reticuloruminal temperature. Our results demonstrated that water quantity and water temperature affect not only the magnitude of change in degrees in Celsius, but also how much time is required for reticulorumen temperature to return to baseline. This study provides insights in how to adjust the temperatures measures affected by water intake when using cattle reticulorumen temperature monitoring systems and how to estimate water consumption using decreases in reticulorumen temperature.AbstractDairy precision technologies helps producers monitor individual animals. Reticulorumen temperature boluses are a way to monitor core body temperature; however, factors such as water intake affects reticulorumen temperature. This research determined the effect of natural water intake and a controlled water drench on reticulorumen temperature (RT) in dairy cattle. In observational study part 1, tie- stall cows (n = 4) with RT transponders were observed for natural water intake (recorded by in line water meters) for 48 h. In experiment part 2, a randomized Latin square design with cows (n = 12) restricted on feed for 4 h, were drenched daily with a water quantity of 6.7 L, 11.4 L or 22.7 L, and at controlled water temperature of 1.7 °C, 7.2 °C, 15.5 °C, or 29.4 °C. Descriptively, observational study 1 had (Mean ± SD 0.27 ± 0.31 L ingested per drinking event (n = 84) and RT decline from baseline was 2.29 ± 1.82 °C. For the experiment, a 48-h specific rolling baseline temperature range (BTR) was calculated for each cow prior to the experiment to determine time required for RT to reach BTR, and time to return to BTR. In part 2 of the experiment, as water quantity increased, RT had a greater maximum degree drop from baseline. Water temperature and water quantity interaction influenced time required for BTR to reestablish. The coldest water temperature at the highest drench quantity affected time for BTR to reestablish the longest (103 min). Results from this study suggest that an algorithm could be designed to predict water intake events for producers using reticulorumen temperature.
Dairy calf welfare concerns are growing and new evidence suggests that the early life environment influences appropriate physical, behavioral, and cognitive development lasting into adulthood. This review highlights key evidence for the impacts of housing, diets, and painful procedures on calf welfare. We argue that these topics are currently critical welfare concerns, but are not the only points of concern. In addition to environmental requirements to maintain optimal health, dairy calves experience other challenges including social and nutritional restrictions. Individual housing is associated with impaired behavioral development and cognitive ability. Pair and group housing can mitigate some of these negative effects and should be encouraged. Restrictive milk allowances (<15% of body weight) lead to poor growth and hunger; these welfare concerns can be addressed with proper enhanced milk allowances and gradual weaning programs. Finally, dehorning is a critical animal welfare issue when pain control is withheld; calves show negative behavioral, physiological, and emotional responses during and after dehorning. The combined use of local anaesthetics and analgesics can mitigate these effects. An industry shift toward providing social companionship, enhanced milk allowances, and pain control during painful procedures would help to improve the welfare of dairy calves in intensive commercial rearing facilities.
Precision technology devices can measure and detect relative changes in an animal's behavior to possibly create alerts to intervene and to administer treatments. However, the association of relative changes in daily feeding and activity behaviors in calves with bovine respiratory disease (BRD) status is still largely unexplored. The objective of this case-control study was to determine if daily behavioral patterns of preweaning dairy calves (measured by precision technologies) change before BRD diagnosis. This case-control study enrolled 33 pairs of calves (33 BRD calves matched by age, sex, and birthdate to 33 controls) health scored daily for BRD for the preweaning period (until 50 d on the automated feeder). A pedometer (IceQube, Ice Robotics) was attached to the left rear leg to track activity (lying time, lying bouts, total steps, and acceleration activity index). At 3.0 ± 2.0 d of age, calves were trained to use the automated feeder, which recorded milk and calf starter intake, drinking speed, and feeder visits. Calves were allotted a maximum 10 L/d of milk replacer (Cow's Match, Land O'Lakes Animal Milk Products Co.; 140 g/L) and starter (Special Calf Starter and Grower, Baghdad Feeds), ad libitum. Calves were scored daily for signs of BRD using the Wisconsin scoring system, and their lungs were scored with ultrasonography twice weekly. Outward signs of BRD as defined by the Wisconsin scoring system and an area of consolidated lung ≥3.0 cm 2 was identified as BRD (d 0). Relative changes in daily behaviors were calculated using d −5 before BRD diagnosis as the baseline for each calf for each behavior. Linear mixed models were used to investigate the association of BRD status with feeding behaviors, activity, and relative changes in calf behavior over a 5-d period before diagnosis, as well as the BRD status × day interaction. Calves with a BRD bout were diagnosed at an average age of 33.0 ± 9.0 d (mean ± standard deviation) and weighed 56.1 ± 9.7 kg. Over the period, BRD calves had reduced milk and starter intake, greater lying times, and fewer lying bouts, step counts, and activity indices when compared with healthy calves. Furthermore, there was a BRD status × day interaction for relative changes in unrewarded visits, and relative changes in calf starter intake. Specifically, BRD calves had a decline in relative changes in their unrewarded visits on d −4, −2, −1, and 0 compared with healthy calves. This study suggests that there is the potential to use feeding and activity behaviors to identify BRD development in preweaning calves. However, utilization of an animals' daily behavioral patterns in real time is fundamental for developing disease detection algorithms, thus we suggest relative changes in unrewarded visits may be useful for algorithm development when d −5 is used as a baseline. Future research should investigate the potential of feeding behavior and activity levels collectively to indicate BRD status in calves using machine learning techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.