Plasmodium vivax shows a strict host tropism for reticulocytes. We identify transferrin receptor 1 (TfR1) as the receptor for P. vivax reticulocyte-binding protein 2b (PvRBP2b). The structure of the N-terminal domain of PvRBP2b involved in red blood cell binding was determined, elucidating the molecular basis for TfR1 recognition. TfR1 was validated as the biological target of PvRBP2b engagement by TfR1 expression knockdown analysis. TfR1 mutant cells deficient in PvRBP2b binding were refractory to invasion of P. vivax, but not to invasion of P. falciparum. Using Brazilian and Thai clinical isolates, we show that PvRBP2b monoclonal antibodies that inhibit reticulocyte binding also block P. vivax entry into reticulocytes. These data show that TfR1-PvRBP2b invasion pathway is critical for the recognition of reticulocytes during P. vivax invasion.
Summary
HLA-DR molecules bind microbial peptides in an endosomal compartment and present them on the cell surface for CD4 T cell surveillance. HLA-DM plays a critical role in the endosomal peptide selection process. The structure of the HLA-DM – HLA-DR complex shows major rearrangements of the HLA-DR peptide binding groove. Flipping of a tryptophan away from the HLA-DR1 P1 pocket enables major conformational changes that position hydrophobic HLA-DR residues into the P1 pocket. These conformational changes accelerate peptide dissociation and stabilize the empty HLA-DR peptide binding groove. Initially, incoming peptides have access to only part of the HLA-DR groove and need to compete with HLA-DR residues for access to the P2 site and the hydrophobic P1 pocket. This energetic barrier creates a rapid and stringent selection process for the highest-affinity binders. Insertion of peptide residues into the P2 and P1 sites reverses the conformational changes, terminating selection through DM dissociation.
The mechanisms of HLA-DM catalyzed peptide exchange remain uncertain. We found that all stages of the interaction of DM with HLA-DR were dependent on the occupancy state of the peptide binding groove. High-affinity peptides were protected from removal by DM through two mechanisms: peptide binding induced dissociation of a long-lived complex of empty DR and DM, and high-affinity DR-peptide complexes bound DM only very slowly. Non-binding covalent DR-peptide complexes were converted to efficient DM binders upon truncation of an N-terminal peptide segment that emptied the P1 pocket and disrupted conserved hydrogen bonds to MHC. DM thus only binds to DR conformers in which a critical part of the binding site is vacant, due to spontaneous peptide motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.