Water-in-oil emulsification affects spilled oil fate and exposure, as well as the effectiveness of oil spill response options, via changes in oil viscosity. While oil weathering processes such as evaporation, dissolution, photo-oxidation, and biodegradation increase oil viscosity about 10-fold, incorporation of water droplets into floating oil can increase viscosity by another order of magnitude. The objective of this study was to evaluate how changes in viscosity by oil type, with weathering, and with emulsification affect oil fate. Oil spill modeling analyses demonstrated that the increase in viscosity from emulsification prolonged floating oil exposure by preventing the oil from dispersing into the water column. Persistent emulsified oils are more likely to come ashore than low viscosity oils that readily disperse. Through a rapid increase in viscosity, emulsification restricted entrainment and slowed evaporation. Water column exposure to dissolved concentrations increased with lower viscosity oils. Thus, the ability to emulsify, and at what weathered state, are important predictors of oil fate. Oil viscosity is an important consideration for choosing response alternatives as it controls effectiveness of mechanical removal, in-situ-burning and surface-active chemicals. Therefore, understanding and quantification of oil emulsification are research priorities. The most influential model input determining emulsification and the emulsion’s viscosity is its maximum water content, as it controls the ultimate viscosity of the emulsion. Viscosities were also influenced by the volatile content and initial viscosity of the oil. Algorithms quantifying emulsion stability under field conditions have not been developed, so emulsions were assumed stable over the 30-day simulations. Changes in emulsion stability over time would affect oil properties and so floating oil and shoreline exposures, as well as response effectiveness. However, water column exposures to dissolved concentrations are determined within a few days of oil release, and as such would not be affected by differences in long-term stabilities of the emulsions.
Historically, visual observation is an emergency responder's first ‘tool’ in identifying spilled oil. Optical detection has since expanded to include a myriad of signals from space, aircraft, drone, vessel and submersible platforms that can provide critical information for decision-making during spill response efforts. Spill monitoring efforts below the air-water interface have been vastly improved by advances with in situ optical sensors and vehicle platform technology. Optical techniques using fluorescence, scattering, and holography offer a means to determine dissolved versus droplet fractions, provide oil concentration estimates and serve as proxies for dispersion efficiency. For subsurface spills over large space and time scales, Autonomous Underwater Vehicles (AUVs) can be used to provide subsurface plume footprints and estimate oil concentrations. For smaller, more frequent spills, tethered compact Remotely Operated Vehicles (ROVs) may be more appropriate as they are easy to deploy for rapid detection. Two underwater oil detection technologies have been developed: (1) A Remote Environmental Monitoring UnitS (REMUS-600) AUV equipped with fluorescence and backscatter SeaOWL UV-A (Oil-in-Water Locator; Sea-Bird Scientific WET Labs Inc.), holographic imager (HoloCam; SeaScan, Inc), hydrographic information, video camera, CTD and a water/oil sampler. (2) A tethered ROV system (DTG2, Deep Trekker Inc.) equipped with video camera, UviLux (Chelsea Technologies Group, Inc) fluorometer, a CTD and water/oil sampler. Calibration and validation tests of the sensor suite were conducted at the Coastal Response Research Center flume tank (NH, USA). Oil concentration estimates were verified by chemical analysis of hydrocarbons and particle size analysis (LISST 200X, Sequoia, Inc). Operational performance of the ROV platform and sensors was evaluated at the Ohmsett wave tank (NJ, USA). Field performance of the REMUS and sensor suite was evaluated at natural seeps near Santa Barbara, CA. This research demonstrates the forensic value of in situ optical data for improved understanding of the behavior and transport of spilled oil below the air-sea interface.
- 687127 Most oil spill response strategies, tactics, and equipment are designed to address floating oil. Previous research and historic events have shown that spilled oil can suspend (i.e., submerged oil) or sink (i.e., sunken oil) as a function of the oil's density relative to that of the receiving waters. Processes such as wave action or current velocity, sediment entrainment, and oil weathering (e.g., evaporation) may change the buoyancy of floating oils causing them to submerge or sink. Non-floating oil is more difficult and expensive to detect and poses significant challenges for containment and cleanup. Many existing detection techniques for non-floating oils rely on oleophilic sorbents, such as snare, which are weighted depending upon the oil's location in the water column and then towed behind a vessel in designated transects. Currently, there is no quantitative method to relate the amount of oil collected by snare to the amount of oil encountered during towing. In addition, the dynamics and interactions of towed snare and oil remain largely unknown. To address these knowledge gaps, various components of snare performance have been evaluated since 2016 by the Coastal Response Research Center (CRRC) at the University of New Hampshire (UNH). The research has evaluated: (1) the impacts of temperature, salinity, oil type, and tow velocity on adsorption and desorption of oil to snare, (2) snare dynamics and position in the water column as a function of tow velocity, (3) the impacts of material type and potential alternatives to snare (e.g., mosquito and fishing nets, plastic debris) for lesser developed countries (LDCs), and (4) the interaction of snare with sunken and submerged oil. The results determined: (1) adsorption of oil to snare was best for less viscous oils (No. 6 Fuel Oil) and lower water temperatures (5°C) and desorption was greatest at low temperatures (6°C) and low current velocities (< 1 knot), while salinity had no significant effect. (2) Tow depth for snare arrays decreased with increased velocity unless a vane was used. (3) Optimal spacing of snare on a chain is a function of tow and current velocity, and drag forces on the tow chain. (4) Snare alternatives with greatest potential for sunken oil detection in LDCs were nylon mosquito netting and plastic bags. The findings from this research improves understanding of the behavior of snare and how it interacts with sunken and submerged oil and can improve towing techniques used by oil spill responders, leading to more effective detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.