A ferrocene-containing, redox-active cationic lipid that can be transformed using electrochemical methods yields large differences in cell transfection depending on the oxidation state of the lipid. Expression of enhanced green fluorescent protein and firefly luciferase occurs at very high levels when DNA lipoplexes are formulated using the lipid in the reduced state. In contrast, transfection is negligible when oxidized lipid is used. These observations suggest the basis of a general method that could be used to transform inactive lipoplex formulations to an active form through the application of externally applied electrical potentials. The ability to activate lipoplexes toward transfection electrochemically and "on demand" could create new opportunities to deliver DNA in vitro and in vivo with both spatial and temporal control.
We report characterization of the nanostructures of complexes formed between the redox-active lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA) and DNA using small-angle neutron scattering (SANS) and cryogenic transmission electron microscopy (cryo-TEM). A particular focus was directed to the influence of lipid oxidation state (where reduced BFDMA has a net charge of +1 and oxidized BFDMA has a charge of +3) on the nanostructures of the solution aggregates formed. Complexes were characterized over a range of charge ratios of reduced BFDMA to DNA (1.1:1, 2.75:1, and 4:1) in solutions of 1 mM Li2SO4. For these complexes, a single peak in the SANS data at 1.2 nm(-1) indicated that a nanostructure with a periodicity of 5.2 nm was present, similar to that observed with complexes of the classical lipids DODAB/DOPE and DNA (multilamellar spacing of 7.0 nm). The absence of additional Bragg peaks in all the SANS data indicated that the periodicity did not extend over large distances. Both inverse Fourier transform analysis and form factor fitting suggested formation of a multilamellar vesicle. These results were confirmed by cryo-TEM images in which multilamellar complexes with diameters between 50 and 150 nm were observed with no more than seven lamellae per aggregate. In contrast to complexes of reduced BFDMA and DNA, Bragg peaks were absent in SANS spectra of complexes formed by oxidized BFDMA and DNA at all charge ratios investigated. The low-q behavior of the SANS data obtained using oxidized BFDMA and DNA complexes suggested that large, loose aggregates were formed, consistent with complementary cryo-TEM images showing predominantly loose disordered aggregates. Some highly ordered spongelike and cubic phase nanostructures were also detected in cryo-TEM images. We conclude that control of BFDMA oxidation state can be used to manipulate the nanostructures of lipid-DNA complexes formed using BFDMA.
We recently reported that the ferrocene-containing cationic lipid BFDMA [bis(11-ferrocenylundecyl)dimethylammonium bromide] can be used to mediate cell transfection, and that levels of transfection depend critically upon the oxidation state of the ferrocenyl groups of the lipid. Here, we report that the redox activity of BFDMA can be exploited to transform lipoplexes formed from oxidized BFDMA (which do not transfect cells) to lipoplexes that are 'active' (and thus mediate high levels of transgene expression) by treatment with the chemical reducing agent glutathione (GSH). We demonstrate that GSH can be used to reduce the ferrocenium groups of oxidized BFDMA rapidly both (i) in solution and (ii) in lipoplexes formed by mixing oxidized BFDMA and DNA. Lipoplexes transformed in this manner mediate levels of cell transfection in vitro that are comparable to levels of transfection mediated by lipoplexes prepared by mixing DNA and reduced BFDMA. We demonstrate further that the chemical reduction of oxidized BFDMA leads to changes in the zeta potentials of these lipoplexes (e.g., from negative to positive). Characterization of lipoplex internalization using confocal microscopy demonstrated that these changes in zeta potential correlate to differences in the extents to which these lipoplexes are internalized by cells. These results provide a framework from which to interpret differences in cell transfection mediated by reduced and oxidized BFDMA. When combined, the results of this study suggest the basis of an approach that could be used to transform lipoplexes actively or 'on-demand' and provide spatial and/or temporal control over the transfection of cells in a range of different fundamental and applied contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.