olyploidy or whole-genome duplication provides genomic opportunities for evolutionary innovations in many animal groups and all flowering plants 1-5 , including most important crops such as wheat, cotton and canola or oilseed rape 6-8. The common occurrence of polyploidy may suggest its advantage and potential for selection and adaptation 2,3,9 , through rapid genetic and genomic changes as observed in newly formed Brassica napus 10 , Tragopogon miscellus 11 and polyploid wheat 12 , and/or largely epigenetic modifications as in Arabidopsis and cotton polyploids 5,13. Cotton is a powerful model for revealing genomic insights into polyploidy 3 , providing a phylogenetically defined framework of polyploidization (~1.5 million years ago (Ma)) 14 , followed by natural diversification and crop domestication 15. The evolutionary history of the polyploid cotton clade is longer than that of some other allopolyploids, such as hexaploid wheat (~8,000 years) 12 , tetraploid canola (~7,500 years) 16 and tetraploid Tragopogon (~150 years) 11. Polyploidization between an A-genome African species (Gossypium arboreum (Ga)-like) and a D-genome American species (G. raimondii (Gr)-like) in the New World created a new allotetraploid or amphidiploid (AD-genome) cotton clade (Fig. 1a) 14 , which has diversified into five polyploid lineages, G. hirsutum (Gh) (AD) 1 , G. barbadense (Gb) (AD) 2 , G. tomentosum (Gt) (AD) 3 , G. mustelinum (Gm) (AD) 4 and G. darwinii (Gd) (AD) 5. G. ekmanianum and G. stephensii are recently characterized and closely related to Gh 17. Gh and Gb were separately domesticated from perennial shrubs to become annualized Upland and Pima cottons 15. To date, global cotton production provides income for ~100 million families across ~150 countries, with an annual economic impact of ~US$500 billion worldwide 6. However, cotton supply is reduced due to aridification, climate change and pest emergence. Future improvements in cotton and sustainability will involve use of the genomic resources and gene-editing tools becoming available in many crops 9,18,19. Cotton genomes have been sequenced for the D-genome (Gr) 20 and A-genome (Ga) 21 diploids and two cultivated tetraploids 22-26. These analyses have shown structural, genetic and gene expression variation related to fiber traits and stress responses in cultivated
Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2–4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6—knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate–gene–biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene–trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.
The 22q13.3 deletion syndrome results from loss of terminal segments of varying sizes at 22qter. Few genotype–phenotype correlations have been found but all patients have mental retardation and severe delay, or absence of, expressive speech. We carried out clinical and molecular characterization of 13 patients. Developmental delay and speech abnormalities were common to all and comparable in frequency and severity to previously reported cases. Array-based comparative genomic hybridization showed the deletions to vary from 95 kb to 8.5 Mb. We also carried out high-resolution 244K array comparative genomic hybridization in 10 of 13 patients, that defined the proximal and distal breakpoints of each deletion and helped determine the size, extent, and gene content within the deletion. Two patients had a smaller 95 kb terminal deletion with breakpoints within the SHANK3 gene while three other patients had a similar 5.5 Mb deletion implying the recurrent nature of these deletions. The two largest deletions were found in patients with ring chromosome 22. No correlation could be made with deletion size and phenotype although complete/partial SHANK3 was deleted in all patients. There are very few reports on array comparative genomic hybridization analysis on patients with the 22q13.3 deletion syndrome, and we aim to accurately characterize these patients both clinically and at the molecular level, to pave the way for further genotype–phenotype correlations.
AbdB-like HOX proteins form DNA-binding complexes with the TALE superclass proteins MEIS1A and MEIS1B, and trimeric complexes have been identified in nuclear extracts that include a second TALE protein, PBX. Thus, soluble DNA-independent protein-protein complexes exist in mammals. The extent of HOX/TALE superclass interactions, protein structural requirements, and sites of in vivo cooperative interaction have not been fully explored. We show that Hoxa13 and Hoxd13 expression does not overlap with that of Meis1-3 in the developing limb; however, coexpression occurs in the developing male and female reproductive tracts (FRTs). We demonstrate that both HOXA13 and HOXD13 associate with MEIS1B in mammalian and yeast cells, and that HOXA13 can interact with all MEIS proteins but not more diverged TALE superclass members. In addition, the C-terminal domains (CTDs) of MEIS1A (18 amino acids) and MEIS1B (93 amino acids) are necessary for HOXA13 interaction; for MEIS1B, this domain was also sufficient. We also show by yeast two-hybrid assay that MEIS proteins can interact with anterior HOX proteins, but for some, additional N-terminal MEIS sequences are required for interaction. Using deletion mutants of HOXA13 and HOXD13, we provide evidence for multiple HOX peptide domains interacting with MEIS proteins. These data suggest that HOX:MEIS interactions may extend to non-AbdB-like HOX proteins in solution and that differences may exist in the MEIS peptide domains utilized by different HOX groups. Finally, the capability of multiple HOX domains to interact with MEIS C-terminal sequences implies greater complexity of the HOX:MEIS protein-protein interactions and a larger role for variation of HOX amino-terminal sequences in specificity of function.
The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.