With the rapid rise in the incidence of multidrug resistant infections, there is substantial interest in host defense peptides as templates for production of new antimicrobial therapeutics. Natural peptides are multifunctional mediators of the innate immune response, with some direct antimicrobial activity and diverse immunomodulatory properties. We have previously developed an innate defense regulator (IDR) 1, with protective activity against bacterial infection mediated entirely through its effects on the immunity of the host, as a novel approach to anti-infective therapy. In this study, an immunomodulatory peptide IDR-1002 was selected from a library of bactenecin derivatives based on its substantially more potent ability to induce chemokines in human PBMCs. The enhanced chemokine induction activity of the peptide in vitro correlated with stronger protective activity in vivo in the Staphylococcus aureus-invasive infection model, with a >5-fold reduction in the protective dose in direct comparison with IDR-1. IDR-1002 also afforded protection against the Gram-negative bacterial pathogen Escherichia coli. Chemokine induction by IDR-1002 was found to be mediated through a Gi-coupled receptor and the PI3K, NF-κB, and MAPK signaling pathways. The protective activity of the peptide was associated with in vivo augmentation of chemokine production and recruitment of neutrophils and monocytes to the site of infection. These results highlight the importance of the chemokine induction activity of host defense peptides and demonstrate that the optimization of the ex vivo chemokine-induction properties of peptides is a promising method for the rational development of immunomodulatory IDR peptides with enhanced anti-infective activity.
There is an urgent need to coat the surfaces of medical devices, including implants, with antimicrobial agents to reduce the risk of infection. A peptide array technology was modified to permit the screening of short peptides for antimicrobial activity while tethered to a surface. Cellulose-amino-hydroxypropyl ether (CAPE) linker chemistry was used to synthesize, on a cellulose support, peptides that remained covalently bound during biological assays. Among 122 tested sequences, the best surface-tethered 9-, 12-, and 13-mer peptides were found to be highly antimicrobial against bacteria and fungi, as confirmed using alternative surface materials and coupling strategies as well as coupling through the C and N termini of the peptides. Structure-activity modeling of the structural features determining the activity of tethered peptides indicated that the extent and positioning of positive charges and hydrophobic residues were influential in determining activity.
The structure and function of the synthetic innate defense regulator peptide 1018 was investigated. This 12 residue synthetic peptide derived by substantial modification of the bovine cathelicidin bactenecin has enhanced innate immune regulatory and moderate direct antibacterial activities. The solution state NMR structure of 1018 in zwitterionic dodecyl phosphocholine (DPC) micelles indicated an α-helical conformation, while secondary structures, based on circular dichroism measurements, in anionic sodium dodecyl sulfate (SDS) and phospholipid vesicles (POPC/PG in a 1:1 molar ratio) and simulations revealed that 1018 can adopt a variety of folds, tailored to its different functions. The structural data are discussed in light of the ability of 1018 to potently induce chemokine responses, suppress the LPS-induced TNF-α response, and directly kill both Gram-positive and Gram-negative bacteria.
Short antimicrobial host-defense peptides represent a possible alternative as lead structures to fight antibiotic resistant bacterial infections. Bac2A is a 12-mer linear variant of the naturally occurring bovine host defense peptide, bactenecin, and demonstrates moderate, broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria as well as against the yeast Candida albicans. With the assistance of a method involving peptide synthesis on a cellulose support, the primary sequence requirements for antimicrobial activity against the human pathogen Pseudomonas aeruginosa of 277 Bac2A variants were investigated by using a luciferase-based assay. Sequence scrambling of Bac2A led to activities ranging from superior or equivalent to Bac2A to inactive, indicating that good activity was not solely dependent on the composition of amino acids or the overall charge or hydrophobicity, but rather required particular linear sequence patterns. A QSAR computational analysis was applied to analyze the data resulting in a model that supported this sequence pattern hypothesis. The activity of selected peptides was confirmed by conventional minimal inhibitory concentration (MIC) analyses with a panel of human pathogen bacteria and fungi. Circular-dichroism (CD) spectroscopy with selected peptides in liposomes and membrane depolarization assays were consistent with a relationship between structure and activity. An additional optimization process was performed involving systematic amino acid substitutions of one of the optimal scrambled peptide variants, resulting in superior active peptide variants. This process provides a cost and time effective enrichment of new candidates for drug development, increasing the chances of finding pharmacologically relevant peptides.
Innate immunity is triggered by a variety of bacterial molecules, resulting in both protective and potentially harmful pro-inflammatory responses. Further, innate immunity also provides a mechanism for the maintenance of homeostasis between the host immune system and symbiotic or non-pathogenic microorganisms. However, the bacterial factors that mediate these protective effects have been incompletely defined. Here, it was demonstrated that the lantiobiotic nisin Z is able to modulate host immune responses and mediate protective host immunity. Nisin Z induced the secretion of the chemokines MCP-1, IL-8 and Gro-α, and significantly reduced TNF-α induction in response to bacterial LPS in human PBMC. The results correlated with the ability of nisin Z to confer protection against both the Gram-positive organism Staphylococcus aureus, and the Gram-negatives Salmonella enterica sv. Typhimurium and Escherichia coli in murine challenge models. Mechanistic studies revealed that nisin Z modulates host immunity through similar mechanisms as natural host defense peptides, engaging multiple signal transduction pathways and growth factor receptors. The results presented herein demonstrate that, in addition to nisin Z, other bacterial cationic peptides and, in particular, the lantibiotics, could represent a new class of secreted bacterial molecule with immunomodulatory activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.