The present study addresses the production of hydrochars from brown seaweed (Fucus serratus) (FS-HCs), coconut shell (CS-HCs), and oak (Oak-HCs) as potential adsorbents using hydrothermal carbonisation (HTC). The effect of HTC processing temperature on the physicochemical adsorbent characteristics of the hydrochars is investigated at different temperatures (200, 220, 250 °C) using a hydrothermal batch reactor. Increasing HTC temperature causes the formation of many spheres in CS-HCs and Oak-HCs, increasing their porosity, except FS-HCs. The surface area of the hydrochars increases with increasing HTC temperature; 10.93–12.78 m2/g for FS-HCs, 2.18–21.94 m2/g for CS-HCs, except for Oak-HCs which decreases from 4.89 to 3.09 m2/g. Increasing HTC temperature decreases volatile matter content in the hydrochars, increases fixed carbon content, and decreases H/C ratio (except for FS-HCs) and O/C ratio of the hydrochars. For all the hydrochars, increasing the HTC temperature results in a slight decrease in zeta potential magnitude, with negatively charged surfaces, making them potential adsorbents for cationic pollutants. The study confirms that the HTC process improves key chemical and physical characteristics of the hydrochars compared to the original biomass, and that the physicochemical adsorbent characteristics are enhanced as the processing temperature increases.
Adsorption of methylene blue (MB) dye from an aqueous solution onto hydrochars produced from brown seaweed (Fucus Serratus) (FS-HC), coconut shell (CS-HC), and oak wood (Oak-HC) at different temperatures (200–250 °C) was investigated in a batch system. Response surface modelling (RSM) was used to investigate the effect of initial MB concentration (50–300 mg/L), contact time (0–240 min), and solution pH (2–12) on the adsorption process. RSM was also used to model and optimise these parameters for efficient adsorption. Kinetic and isotherms studies were carried out to study the adsorption mechanism onto the hydrochars. It was found that the best adsorbent from the RSM model was FS-HC200, and the optimal conditions for greater MB dye uptake were lower initial MB concentration (50 mg/L), pH 6 and contact time of 84 min; removing >99% of MB. Langmuir and Redlich–Peterson isotherm models fitted the adsorption of MB onto hydrochars prepared at 200 and 250 °C. Freundlich and Redlich–Peterson isotherms were suitable for hydrochars produced at 220 °C. FS-HCs have the highest maximum adsorption capacity of MB of about (8.60–28.57) mg/g calculated from the Langmuir isotherm. The adsorption process for all the hydrochars followed a pseudo-second-order model (R2 = 0.96–1.00), and film diffusion and intraparticle diffusion were the rate-determining steps. Therefore, this work identifies cheap adsorbents from biowaste that are effective for the removal of cationic pollutants from wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.