Melatonin is an important hormone regulating circadian clocks in birds, but the specific cellular sites of action are not completely known. The present study was designed to determine whether astrocytes derived from chick brain contained functional melatonin receptors. Primary cell cultures of diencephalon astrocytes that express glial fibrillary acidic protein (GFAP), but not neuron-specific enolase (NSE) immunoreactivity, were employed to determine the cellular distribution and physiological role for the three known receptor subtypes. Saturation and Scatchard analysis of 2-[(125)I]iodomelatonin binding demonstrated melatonin receptor binding with a high affinity and a pharmacological profile similar to that obtained from brain. In situ hybridization for receptor subtypes revealed Mel(1A) and Mel(1C) receptor mRNA, but not Mel(1B). Administration of pharmacological levels of melatonin acutely inhibited forskolin-stimulated 2-deoxyglucose (2DG) uptake, while rhythmic administration of physiological levels of melatonin gradually imposed a rhythm in 2DG uptake and of the release of both lactate and pyruvate into the medium. These results indicate that (1) there are functional Mel(1A) and Mel(1C) melatonin receptors in astrocyte-rich cultures, and (2) rhythmic administration of melatonin plays an important role in the regulation of astrocytic metabolic activity. Together, the data suggest that the circadian secretion of melatonin probably plays a role in the global metabolic economy of the avian brain through rhythmic regulation of metabolism in astrocytes.
Biological timekeeping in birds is a fundamental feature of avian physiology, behavior and ecology. The physiological basis for avian circadian rhythmicity has pointed to a multi-oscillator system of mutually coupled pacemakers in the pineal gland, eyes and hypothalamic suprachiasmatic nuclei (SCN). In passerines, the role of the pineal gland and its hormone melatonin is particularly important. More recent molecular biological studies have pointed to a highly conserved mechanism involving rhythmic transcription and translation of “clock genes”. However, studies attempting to reconcile the physiological role of pineal melatonin with molecular studies have largely failed. Recent work in our laboratory has suggested that melatonin-sensitive physiological processes are only loosely coupled to transcriptional oscillations. Similarly, although the pineal gland has been shown to be critical for overt circadian behaviors, its role in annual cycles of reproductive function appears to be minimal. Recent work on the seasonal control of birdsong, however, suggests that, although the pineal gland does not directly affect gonadal cycles, it is important for seasonal changes in song. Experimental analyses that address these paradoxes will shed light on the roles the biological clock play in birds and in vertebrates in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.