We have isolated cDNA clones that encode a novel human gene related to agouti. Sequence analysis of this gene, named ART, for agouti-related transcript, predicts a 132-amino-acid protein that is 25% identical to human agouti. The highest degree of identity is within the carboxyl terminus of both proteins. Like agouti, ART contains a putative signal sequence and a cysteine rich carboxyl terminus, but lacks the region of basic residues and polyproline residues found in the middle of the agouti protein. Both agouti and ART contain 11 cysteines, and 9 of these are conserved spatially. ART is expressed primarily in the adrenal gland, subthalamic nucleus, and hypothalamus, with a lower level of expression occurring in testis, lung, and kidney. The murine homolog of ART was also isolated and is predicted to encode a 131-amino-acid protein that shares 81% amino acid identity to humans. The mouse was found to have the same expression pattern as human when assessed by RT-PCR. Examination by in situ hybridization using mouse tissues showed localized expression in the arcuate nucleus of the hypothalamus, the median eminence, and the adrenal medulla. In addition, the hypothalamic expression of ART was elevated approximately 10-fold in ob/ob and db/db mice. ART was mapped to human chromosome 16q22 and to mouse chromosome 8D1-D2. The expression pattern and transcriptional regulation of ART, coupled with the known actions of agouti, suggests a role for ART in the regulation of melanocortin receptors within the hypothalamus and adrenal gland, and implicates this novel gene in the central control of feeding.
Recombinant fibroblast growth factor (FGF)21 has antihyperglycemic, antihyperlipidemic, and antiobesity effects in diabetic rodent and monkey models. Previous studies were confined to measuring steady-state effects of FGF21 following subchronic or chronic administration. The present study focuses on the kinetics of biological actions of FGF21 following a single injection and on the associated physiological and cellular mechanisms underlying FGF21 actions. We show that FGF21 resulted in rapid decline of blood glucose levels and immediate improvement of glucose tolerance and insulin sensitivity in two animal models of insulin resistance (ob/ob and DIO mice). In ob/ob mice, FGF21 led to a 40-60% decrease in blood glucose, insulin, and amylin levels within 1 h after injection, and the maximal effects were sustained for more than 6 h despite the 1- to 2-h half-life of FGF21. In DIO mice, FGF21 reduced fasting blood glucose and insulin levels and improved glucose tolerance and insulin sensitivity within 3 h of treatment. The acute improvement of glucose metabolism was associated with a 30% reduction of hepatic glucose production and an increase in peripheral glucose turnover. FGF21 appeared to have no direct effect on ex vivo pancreatic islet insulin or glucagon secretion. However, it rapidly induced typical FGF signaling in liver and adipose tissues and in several hepatoma-derived cell lines and differentiated adipocytes. FGF21 was able to inhibit glucose release from H4IIE hepatoma cells and stimulate glucose uptake in 3T3-L1 adipocytes. We conclude that the acute glucose-lowering and insulin-sensitizing effects of FGF21 are potentially associated with its metabolic actions in liver and adipose tissues.
The destruction of pancreatic islet beta cells in insulin-dependent diabetes mellitus (IDDM) is thought to be T cell mediated. To directly identify islet-reactive T cells in asymptomatic, "preclinical" IDDM individuals with islet cell antibodies (ICA), proliferation of peripheral blood mononuclear cells (PBMC) was measured in the presence of sonicated fetal pig proislets. Stimulation indices (mean±SD) for pIHlthymidine uptake by PBMC cultured with sonicated proislets were: preclinical IDDM subjects (n = 22) 6.10±6.50, recent-onset IDDM subjects (n = 29) 3.66±3.35, Graves' disease subjects (n = 6) 2.17±0.93, scleroderma subjects (n = 4) 1.65±0.19 and normal control subjects (a = 14) 1.63±0.62. 68% (15/22) of preclinical IDDM, 41% (12/29) of recent-onset IDDM and 17% (1/6) of Graves' disease subjects had T cell reactivity greater than the mean + 2 SD of controls. T cell reactivity to proislets was tissue specific, and greater in magnitude and frequency than to human insulin.The majority of preclinical subjects with ICA > 20 Juvenile Diabetes Foundation (JDF) units (12/15,80%) or antibodies to a 64-kD islet autoantigen (11/15, 73%) had significant T cell reactivity to proislets. ICA > 40 JDF units, a strong prognostic marker for progression to clinical IDDM, was an absolute index of T cell reactivity. Overall, the frequency of T cell reactivity in preclinical subjects, 68% (15/22), was comparable to that of ICA > 20 JDF units or 64-kD antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.