Desensitization plays an important role in the rapid termination of G-protein signaling pathways. This process, which involves phosphorylation by a G-protein-coupled receptor kinase (GRK) followed by arrestin binding, has been studied extensively in the rod photoreceptor cell of the mammalian retina. In contrast, less is known regarding desensitization in cone photoreceptor cells, which occurs more rapidly than in rod cells. Recently, our laboratory has cloned a novel GRK family member, GRK7, from the retina of a cone-dominant mammal, the 13-lined ground squirrel. Here we report the cloning of GRK7 from rod-dominant pig and human retinas, suggesting that this kinase plays a role in human visual signaling. Because GRK1 (rhodopsin kinase), the GRK that mediates rhodopsin desensitization in the rod cell, is reportedly expressed in both rods and cones, a detailed comparison of the localization of the two kinases is a necessary step toward determining their potential roles in cone visual signaling. Immunocytochemical analysis using antibodies selective for these two GRKs unexpectedly demonstrated species-specific differences in GRK7 and GRK1 expression in cones. In pigs and dogs, cones express only GRK7, whereas in mice and rats, we detected only GRK1 in cones. These results suggest that either GRK7 or GRK1 may participate in cone opsin desensitization, depending on the expression pattern of the kinases in different species. In contrast, GRK7 and GRK1 are coexpressed in monkey and human cones, suggesting that coordinate regulation of desensitization by both kinases may occur in primates.
Proliferating astrocytes are frequently observed in diseased and injured brains. These newly generated astrocytes are necessary to reestablish the barriers that isolate the CNS from the rest of the body; however, they also create a matrix that inhibits regeneration and remyelination. Therefore, it is important to understand the mechanisms that enable a terminally differentiated astrocyte to reenter the cell cycle. Ciliary neurotrophic factor (CNTF), interleukin‐6 (IL‐6), transforming growth factor‐α (TGF‐α), and fibroblastic growth factor‐2 (FGF‐2) are four cytokines that are rapidly elevated in damaged neural tissue. These cytokines also have been implicated in glial scar formation. We sought to determine whether IL‐6 and CNTF stimulate astroglial proliferation alone or in combination with other mitogens. Intraparenchymal CNTF modestly increased the number of proliferating cell nuclear antigen (PCNA) and glial fibrillary acidic protein (GFAP) double positive astrocytes when introduced by stereotactic injection into the adult rat brain. When applied directly to highly enriched rat forebrain astrocyte cultures, neither CNTF nor IL‐6‐stimulated DNA synthesis. Therefore, they are not astroglial mitogens. However, both cytokines synergized with epidermal growth factor (EGF), increasing its mitogenicity by approximately twofold. Astrocytes that had been “aged” for at least 3 weeks in vitro became refractory to EGF; however, when these “aged” astrocytes were pretreated with either IL‐6 or CNTF for as little as 2 h, they became competent to reenter the cell cycle upon exposure to EGF. These data suggest that IL‐6 type cytokines, likely by activating STAT family transcription factors, induce the expression of signaling molecules that endow resting astrocytes with the competence to respond to mitogens and to reenter the cell cycle. GLIA 32:328–337, 2000. © 2000 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.