Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen—the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains.IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen—the pentameric complex. We further demonstrated that following vaccination of a replication-defective virus with the restored pentameric complex, rhesus macaques can develop broadly neutralizing antibodies targeting multiple immunogenic sites of the pentameric complex. Such analyses of site-specific antibody responses are imperative to our assessment of the quality of vaccine-induced immunity in clinical studies.
An in vitro relative potency (IVRP) assay has been developed as an alternative to the mouse potency assay used to release Merck's human papillomavirus (HPV) vaccine, Gardasil ® , for early phase clinical trials. The mouse potency assay is a classical, in vivo assay, which requires 4-6 weeks to complete and exhibits variability on the order of 40% relative standard deviation (RSD). The IVRP assay is a sandwich-type immunoassay that is used to measure relative antigenicity of the vaccine product. The IVRP assay can be completed in three days, has a variability of approximately 10% RSD and does not require the sacrifice of live animals. Because antigen detection is achieved using H16.V5, a neutralizing monoclonal antibody, which binds to a clinically-relevant epitope, the relative antigenicity measured by the IVRP assay is believed to be a good predictor of in vivo potency.In this study, the relationship between immunogenicity, as measured by the mouse potency assay and antigenicity as measured by the IVRP assay, is demonstrated. Freshly manufactured and aged samples produced using two different manufacturing processes were tested using both methods. The results demonstrate that there is an inverse correlation between the IVRP and mouse potency assays. Additionally, clinical results indicate IVRP is predictive of human immunogenicity. Thus, antigenicity, as defined by the H16.V5 epitope, can be used as a surrogate for immunogenicity and the IVRP assay is suitable for use as the sole potency test for Gardasil samples.
The thermostability of GARDASIL (Merck & Co., Inc, Whitehouse Station, NJ, USA), a developmental vaccine against human papillomavirus (HPV), was evaluated using an enzyme immunoassay, referred to as the in vitro relative potency (IVRP) assay and differential scanning calorimetry (DSC). Gardasil samples were stored at temperatures ranging from 4 to 42 degrees C and tested for IVRP at various time points. Extrapolation of the IVRP results indicates GARDASIL is extremely stable. The half-life of the vaccine is estimated to be 130 months or longer at temperatures up to 25 degrees C. At 37 degrees C, the half-life is predicted to be 18 months and at 42 degrees C, the half-life is predicted to be approximately three months. Differential scanning calorimetry (DSC) analysis was used to evaluate the process of protein denaturation during a rapid temperature increase (as opposed to long-term storage at a specific temperature). Differences were seen among the DSC profiles of the four HPV types tested. This indicates that small differences in the amino acid structure can have a significant effect on the intermolecular contacts that stabilize the L1 proteins and the VLP assembly. For the Gardasil samples evaluated here, DSC results demonstrated the relative overall structural stability of the VLPs, but were not predictive of the excellent long-term stability observed with the IVRP assay.
Many CE-based technologies such as imaged capillary IEF, CE-SDS, CZE, and MEKC are well established for analyzing proteins, viruses, or other biomolecules such as polysaccharides. For example, imaged capillary isoelectric focusing (charge-based protein separation) and CE-SDS (size-based protein separation) are standard replacement methods in biopharmaceutical industries for tedious and labor intensive IEF and SDS-PAGE methods, respectively. Another important analytical tool for protein characterization is a Western blot, where after size-based separation in SDS-PAGE the proteins are transferred to a membrane and blotted with specific monoclonal or polyclonal antibodies. Western blotting analysis is applied in many areas such as biomarker research, therapeutic target identification, and vaccine development. Currently, the procedure is very manual, laborious, and time consuming. Here, we evaluate a new technology called Simple Western™ (or Simon™) for performing automated Western analysis. This new technology is based on CE-SDS where the separated proteins are attached to the wall of capillary by a proprietary photo activated chemical crosslink. Subsequent blotting is done automatically by incubating and washing the capillary with primary and secondary antibodies conjugated with horseradish peroxidase and detected with chemiluminescence. Typically, Western blots are not quantitative, hence we also evaluated the quantitative aspect of this new technology. We demonstrate that Simon™ can quantitate specific components in one of our vaccine candidates and it provides good reproducibility and intermediate precision with CV <10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.