Cancers subvert the host immune system to facilitate disease progression. These evolved immunosuppressive mechanisms are also implicated in circumventing immunotherapeutic strategies. Emerging data indicate that local tumor-associated DC populations exhibit tolerogenic features by promoting Treg development; however, the mechanisms by which tumors manipulate DC and Treg function in the tumor microenvironment remain unclear. Type III TGF-β receptor (TGFBR3) and its shed extracellular domain (sTGFBR3) regulate TGF-β signaling and maintain epithelial homeostasis, with loss of TGFBR3 expression promoting progression early in breast cancer development. Using murine models of breast cancer and melanoma, we elucidated a tumor immunoevasion mechanism whereby loss of tumor-expressed TGFBR3/sTGFBR3 enhanced TGF-β signaling within locoregional DC populations and upregulated both the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) in plasmacytoid DCs and the CCL22 chemokine in myeloid DCs. Alterations in these DC populations mediated Treg infiltration and the suppression of antitumor immunity. Our findings provide mechanistic support for using TGF-β inhibitors to enhance the efficacy of tumor immunotherapy, indicate that sTGFBR3 levels could serve as a predictive immunotherapy biomarker, and expand the mechanisms by which TGFBR3 suppresses cancer progression to include effects on the tumor immune microenvironment.
Endoglin, a TGF-β coreceptor predominantly expressed in endothelial cells, plays an important role in vascular development and tumor-associated angiogenesis. However, the mechanism by which endoglin regulates angiogenesis, especially during tip cell formation, remains largely unknown. In this study, we report that endoglin promoted VEGF-induced tip cell formation. Mechanistically, endoglin interacted with VEGF receptor (VEGFR)-2 in a VEGF-dependent manner, which sustained VEGFR2 on the cell surface and prevented its degradation. Endoglin mutants deficient in the ability to interact with VEGFR2 failed to sustain VEGFR2 on the cell surface and to promote VEGF-induced tip cell formation. Further, an endoglin-targeting monoclonal antibody (mAb), TRC105, cooperated with a VEGF-A targeting mAb, bevacizumab, to inhibit VEGF signaling and tip cell formation in vitro and to inhibit tumor growth, metastasis, and tumor-associated angiogenesis in a murine tumor model. This study demonstrate a novel mechanism by which endoglin initiates and regulates VEGF-driven angiogenesis while providing a rationale for combining anti-VEGF and anti-endoglin therapy in patients with cancer.-Tian, H., Huang, J. J., Golzio, C., Gao, X., Hector-Greene, M., Katsanis, N., Blobe, G. C. Endoglin interacts with VEGFR2 to promote angiogenesis.
Endoglin is a modulator of TGF-β signaling in endothelial cells. We show that it forms stable homodimers serving as a scaffold for binding TβRII, ALK5, and ALK1. ALK1 and ALK5 bind endoglin differentially, with TβRII recruiting ALK5. Signaling data indicate a role for this receptor complex in balancing TGF-β signaling between Smad1/5/8 and Smad2/3.
Study of the TβRIII interaction with the signaling TGF-β receptors shows that TβRIII homo-oligomerization is indirect, depending largely on interactions with GIPC scaffolds. TβRI and II bind independently to TβRIII, competing with TβRI-TβRII complex formation and inhibiting Smad2/3 signaling by a mechanism independent of TβRIII ectodomain shedding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.