Methods of preparation and analysis of structured waves of light, electrons, and atoms have been advancing rapidly. Despite the proven power of neutrons for material characterization and studies of fundamental physics, neutron science has not been able to fully integrate these techniques because of small transverse coherence lengths, the relatively poor resolution of spatial detectors, and low fluence rates. Here, we demonstrate methods that are practical with the existing technologies and show the experimental achievement of neutron helical wavefronts that carry well-defined orbital angular momentum values. We discuss possible applications and extensions to spin-orbit correlations and material characterization techniques.
Topologically nontrivial spin textures host great promise for future spintronic applications. Skyrmions in particular are of burgeoning interest owing to their nanometric size, topological protection, and high mobility via ultra-low current densities. It has been previously reported through magnetic susceptibility, microscopy, and scattering techniques that Co8Zn8Mn4 forms an above room temperature triangular skyrmion lattice. Here, we report the synthesis procedure and characterization of a polycrystalline Co8Zn8Mn4 disordered bulk sample. We employ powder X-ray diffraction and backscatter Laue diffraction as characterization tools of the crystallinity of the samples, while magnetic susceptibility and Small Angle Neutron Scattering (SANS) measurements are performed to study the skyrmion phase. Magnetic susceptibility measurements show a dip anomaly in the magnetization curves, which persists over a range of approximately 305 K–315 K. SANS measurements reveal a rotationally disordered polydomain skyrmion lattice. Applying a symmetry-breaking magnetic field sequence, we were able to orient and order the previously jammed state to yield the prototypical hexagonal diffraction patterns with secondary diffraction rings. This emergence of the skyrmion order serves as a unique demonstration of the fundamental interplay of structural disorder and anisotropy in stabilizing the thermal equilibrium phase.
Magnetic skyrmions are localized non-collinear spin textures, characterized by an integer topological charge. Commonly observed in thin systems as two-dimensional sheets, in three dimensions skyrmions form tubes that are thought to nucleate and annihilate along their depth on points of vanishing magnetization. However, a lack of techniques that can probe the bulk of the material has made it difficult to perform experimental visualizations of skyrmion lattices and their stabilization through defects. Here we present three-dimensional visualizations of a bulk Co8Zn8Mn4 skyrmion lattice through a tomographic algorithm applied to multiprojection small-angle neutron scattering measurements. Reconstructions of the sample show a disordered skyrmion lattice exhibiting three-dimensional topological transitions through emergent (anti)monopole branching and segmentation defect pathways. Our technique provides insights into skyrmion stabilization and topological transition pathways in a bulk skyrmion lattice, guiding the future development and manipulation of skyrmion materials for spintronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.