Stopping an initiated response could be implemented by a fronto-basal-ganglia circuit, including the right inferior frontal cortex (rIFC) and the subthalamic nucleus (STN). Intracranial recording studies in humans reveal an increase in beta-band power (~16-20 Hz) within the rIFC and STN when a response is stopped. This suggests that the beta-band could be important for communication in this network. If this is the case, then altering one region should affect the electrophysiological response at the other. We addressed this hypothesis by recording scalp EEG during a stop task while modulating STN activity with deep brain stimulation. We studied 15 human patients with Parkinson's Disease and 15 matched healthy control subjects. Behaviorally, patients OFF stimulation were slower than controls to stop their response. Moreover, stopping speed was improved for ON compared to OFF stimulation. For scalp EEG, there was greater beta power, around the time of stopping, for patients ON compared to OFF stimulation. This effect was stronger over the right compared to left frontal cortex, consistent with the putative right-lateralization of the stopping network. Thus, deep brain stimulation of the STN improved behavioral stopping performance and increased the beta-band response over the right frontal cortex. These results complement other evidence for a structurally-connected, functional, circuit between right frontal cortex and the basal ganglia. The results also suggest that deep brain stimulation of the STN may improve task performance by increasing the fidelity of information transfer within a fronto-basal ganglia circuit.
It is not yet well understood how dopaminergic therapy improves cognitive and motor function in Parkinson's disease (PD). One possibility is that it reduces the pathological synchronization within and between the cortex and basal ganglia, thus improving neural communication. We tested this hypothesis by recording scalp electroencephalography (EEG) in PD patients when On and Off medication, during a brief resting state epoch (no task), and during performance of a stop signal task that is thought to engage two partially overlapping (or different) frontal-basal-ganglia circuits. For resting state EEG, we measured pair-wise coherence between scalp electrodes in several frequency bands. Consistent with previous studies, in the Off medication state, those patients with the greatest clinical impairment had the strongest coherence, especially in the beta band, indicating pathological over-synchronization. Dopaminergic medication reduced this coherence. For the stop signal task, On vs. Off medication increased beta band power over right frontal cortex for successful stopping and over bilateral sensorimotor cortex for going, especially for those patients who showed greater clinical improvement. Thus, medication reduced pathological coherence in beta band at rest and increased task related beta power for two potentially dissociable cortico-basal ganglia circuits. These results support the hypothesis that dopaminergic medication in PD improves neural communication both at rest and for executive and motor function.
Three patients are reported on who developed transient generalised weakness after receiving therapeutic doses of botulinum toxin for cervical dystonia (one case) and symptomatic hemidystonia (two cases) respectively. Clinical and electrophysiological findings were in keeping with mild botulism. All patients had received previous botulinum toxin injections without side eVects and one patient continued injections without recurrence of generalised weakness. The cause is most likely presynaptic inhibition due to systemic spread of the toxin. Patients with symptomatic dystonia may be more likely to have this side eVect and botulinum toxin injections in these patients should be carried out cautiously. (J Neurol Neurosurg Psychiatry 1999;67:90-93)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.