Physical activity during growth increases bone mass and strength; however, it remains unclear whether these benefits persist. The purpose of this study was to determine: (a) if bone loading during adolescence (13-18 years) or young adulthood (19-29 years) in men is associated with greater bone mineral density (BMD) in adulthood; (b) if current participation in high-impact activity (ground reaction force>4×body weight) and/or resistance training is associated with greater BMD; and, (c) if continuous participation in a high-impact activity from adolescence to adulthood is associated with greater BMD. Apparently healthy, physically active men aged 30 to 65 years (n=203) participated in this cross-sectional study. Exercise-associated bone loading was estimated based on ground reaction forces of historical physical activity. Current BMD was measured using dual-energy X-ray absorptiometry. Participants were grouped based on current participation in a high-impact activity (n=18), resistance training (n=57), both (n=14), or neither (n=114); groups were compared by two-way analysis of covariance. Bone loading during adolescence and young adulthood were significant, positive predictors of BMD of the whole body, total hip, and lumbar spine, adjusting for lean body mass and/or age in the regression models. Individuals who currently participate in a high-impact activity had greater lumbar spine BMD than nonparticipants. Men who continuously participated in a high-impact activity had greater hip and lumbar spine BMD than those who did not. In conclusion, physical activity-associated bone loading both during and after skeletal growth is positively associated with adult bone mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.