Summary
Malignant astrocytic brain tumors are among the most lethal cancers. Quiescent, and therapy-resistant neural stem cell (NSC)-like cells in astrocytomas are likely to contribute to poor outcome. Malignant oligodendroglial brain tumors, in contrast, are therapy-sensitive. Using magnetic resonance imaging (MRI) and detailed developmental analyses, we demonstrated that murine oligodendroglioma cells show characteristics of oligodendrocyte progenitor cells (OPCs), are therapy-sensitive; and that OPC rather than NSC markers enriched for tumor formation. MRI of human oligodendroglioma also suggested a white-matter (WM) origin, with markers for OPCs rather than NSCs similarly enriching for tumor formation. Our results suggest that oligodendroglioma cells show hallmarks of OPCs, and that a progenitor rather than a NSC origin underlies improved prognosis in patients with this tumor.
Neuroblastoma, a tumor of peripheral neural crest origin, numbers among the most common childhood cancers. Both amplification of the proto-oncogene MYCN and increased neoangiogenesis mark high-risk disease. Because angiogenesis is regulated by phosphatidylinositol 3-kinase (PI3K), we tested a clinical PI3K inhibitor, NVP-BEZ235, in MYCN-dependent neuroblastoma. NVP-BEZ235 decreased angiogenesis and improved survival in both primary human (highly pretreated recurrent MYCN-amplified orthotopic xenograft) and transgenic mouse models for MYCN-driven neuroblastoma. Using both gain- and loss-of-function approaches, we demonstrated that the anti-angiogenic efficacy of NVP-BEZ235 depended critically on MYCN in vitro and in vivo. Thus, clinical PI3K/mammalian target of rapamycin inhibitors drove degradation of MYCN in tumor cells, with secondary paracrine blockade of angiogenesis. Our data demonstrated significantly improved survival in treated animals and suggest that NVP-BEZ235 should be tested in children with high-risk, MYCN-amplified neuroblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.